These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26484242)

  • 1. Identification of sRNA interacting with a transcript of interest using MS2-affinity purification coupled with RNA sequencing (MAPS) technology.
    Lalaouna D; Massé E
    Genom Data; 2015 Sep; 5():136-8. PubMed ID: 26484242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of New Bacterial Small RNA Targets Using MS2 Affinity Purification Coupled to RNA Sequencing.
    Carrier MC; Laliberté G; Massé E
    Methods Mol Biol; 2018; 1737():77-88. PubMed ID: 29484588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MS2-Affinity Purification Coupled with RNA Sequencing in Gram-Positive Bacteria.
    Mercier N; Prévost K; Massé E; Romby P; Caldelari I; Lalaouna D
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A game of tag: MAPS catches up on RNA interactomes.
    Carrier MC; Lalaouna D; Massé E
    RNA Biol; 2016 May; 13(5):473-6. PubMed ID: 26967018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3' external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise.
    Lalaouna D; Carrier MC; Semsey S; Brouard JS; Wang J; Wade JT; Massé E
    Mol Cell; 2015 May; 58(3):393-405. PubMed ID: 25891076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Prowl: An In Vivo Method to Identify RNA Partners of a sRNA.
    Carrier MC; Morin C; Massé E
    Methods Enzymol; 2018; 612():251-268. PubMed ID: 30502945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo expression and purification of aptamer-tagged small RNA regulators.
    Said N; Rieder R; Hurwitz R; Deckert J; Urlaub H; Vogel J
    Nucleic Acids Res; 2009 Nov; 37(20):e133. PubMed ID: 19726584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of unknown RNA partners using MAPS.
    Lalaouna D; Prévost K; Eyraud A; Massé E
    Methods; 2017 Mar; 117():28-34. PubMed ID: 27876680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MS2-Affinity Purification Coupled With RNA Sequencing Approach in the Human Pathogen Staphylococcus aureus.
    Lalaouna D; Desgranges E; Caldelari I; Marzi S
    Methods Enzymol; 2018; 612():393-411. PubMed ID: 30502950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Affinity Chromatography-Based Approach to Unravel the sRNA Interactome in Nitrogen-Fixing Rhizobia.
    García-Tomsig NI; Lagares A; Becker A; Valverde C; Jiménez-Zurdo JI
    Methods Mol Biol; 2024; 2741():363-380. PubMed ID: 38217663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms.
    Tomasini A; Moreau K; Chicher J; Geissmann T; Vandenesch F; Romby P; Marzi S; Caldelari I
    Nucleic Acids Res; 2017 Jun; 45(11):6746-6760. PubMed ID: 28379505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hfq Globally Binds and Destabilizes sRNAs and mRNAs in Yersinia pestis.
    Han Y; Chen D; Yan Y; Gao X; Liu Z; Xue Y; Zhang Y; Yang R
    mSystems; 2019 Jul; 4(4):. PubMed ID: 31311844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure.
    Wroblewska Z; Olejniczak M
    RNA; 2016 Jul; 22(7):979-94. PubMed ID: 27154968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. StarScan: a web server for scanning small RNA targets from degradome sequencing data.
    Liu S; Li JH; Wu J; Zhou KR; Zhou H; Yang JH; Qu LH
    Nucleic Acids Res; 2015 Jul; 43(W1):W480-6. PubMed ID: 25990732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of aptamer tagging to identify in vivo protein binding partners of small regulatory RNAs.
    Corcoran CP; Rieder R; Podkaminski D; Hofmann B; Vogel J
    Methods Mol Biol; 2012; 905():177-200. PubMed ID: 22736004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting silencing mechanisms of the same target mRNA by two regulatory RNAs in Escherichia coli.
    Lalaouna D; Prévost K; Laliberté G; Houé V; Massé E
    Nucleic Acids Res; 2018 Mar; 46(5):2600-2612. PubMed ID: 29294085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA.
    Grüll MP; Peña-Castillo L; Mulligan ME; Lang AS
    RNA Biol; 2017 Jul; 14(7):914-925. PubMed ID: 28296577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MISIS: a bioinformatics tool to view and analyze maps of small RNAs derived from viruses and genomic loci generating multiple small RNAs.
    Seguin J; Otten P; Baerlocher L; Farinelli L; Pooggin MM
    J Virol Methods; 2014 Jan; 195():120-2. PubMed ID: 24134945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.