These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26484535)

  • 1. Using Fluorescent Proteins to Visualize and Quantitate Chlamydia Vacuole Growth Dynamics in Living Cells.
    Zuck M; Feng C; Hybiske K
    J Vis Exp; 2015 Oct; (104):. PubMed ID: 26484535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broad recruitment of mGBP family members to Chlamydia trachomatis inclusions.
    Lindenberg V; Mölleken K; Kravets E; Stallmann S; Hegemann JH; Degrandi D; Pfeffer K
    PLoS One; 2017; 12(9):e0185273. PubMed ID: 28945814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 5. Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors.
    Chin E; Kirker K; Zuck M; James G; Hybiske K
    PLoS One; 2012; 7(10):e46949. PubMed ID: 23071671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins.
    Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM
    Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.
    Vromman F; Laverrière M; Perrinet S; Dufour A; Subtil A
    PLoS One; 2014; 9(6):e99197. PubMed ID: 24911516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host and Bacterial Glycolysis during
    Ende RJ; Derré I
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.
    Aeberhard L; Banhart S; Fischer M; Jehmlich N; Rose L; Koch S; Laue M; Renard BY; Schmidt F; Heuer D
    PLoS Pathog; 2015 Jun; 11(6):e1004883. PubMed ID: 26042774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229.
    Rzomp KA; Moorhead AR; Scidmore MA
    Infect Immun; 2006 Sep; 74(9):5362-73. PubMed ID: 16926431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Make It a Sweet Home: Responses of
    Triboulet S; Subtil A
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30848236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity.
    Wang X; Hybiske K; Stephens RS
    Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets.
    Kumar Y; Cocchiaro J; Valdivia RH
    Curr Biol; 2006 Aug; 16(16):1646-51. PubMed ID: 16920627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites.
    Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K
    PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.
    Weber MM; Bauler LD; Lam J; Hackstadt T
    Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis and its interaction with the cellular retromer.
    Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D
    Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safe haven under constant attack-The Chlamydia-containing vacuole.
    Fischer A; Rudel T
    Cell Microbiol; 2018 Oct; 20(10):e12940. PubMed ID: 30101516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions.
    Ende R; Derré I
    Methods Mol Biol; 2019; 2042():205-218. PubMed ID: 31385278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.