These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 26484563)
1. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media. Bradford SA; Torkzaban S Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563 [TBL] [Abstract][Full Text] [Related]
2. Critical role of surface roughness on colloid retention and release in porous media. Torkzaban S; Bradford SA Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805 [TBL] [Abstract][Full Text] [Related]
3. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Torkzaban S; Kim HN; Simunek J; Bradford SA Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media. Sasidharan S; Bradford SA; Torkzaban S; Ye X; Vanderzalm J; Du X; Page D Sci Total Environ; 2017 Dec; 603-604():406-415. PubMed ID: 28641182 [TBL] [Abstract][Full Text] [Related]
7. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Ma H; Pazmino E; Johnson WP Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388 [TBL] [Abstract][Full Text] [Related]
8. Colloid retention at the meniscus-wall contact line in an open microchannel. Zevi Y; Gao B; Zhang W; Morales VL; Cakmak ME; Medrano EA; Sang W; Steenhuis TS Water Res; 2012 Feb; 46(2):295-306. PubMed ID: 22130000 [TBL] [Abstract][Full Text] [Related]
9. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Bradford SA; Torkzaban S; Shapiro A Langmuir; 2013 Jun; 29(23):6944-52. PubMed ID: 23687981 [TBL] [Abstract][Full Text] [Related]
10. Colloid interaction energies for physically and chemically heterogeneous porous media. Bradford SA; Torkzaban S Langmuir; 2013 Mar; 29(11):3668-76. PubMed ID: 23437902 [TBL] [Abstract][Full Text] [Related]
11. Virus-sized colloid transport in a single pore: model development and sensitivity analysis. Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707 [TBL] [Abstract][Full Text] [Related]
12. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration. Zhang W; Morales VL; Cakmak ME; Salvucci AE; Geohring LD; Hay AG; Parlange JY; Steenhuis TS Environ Sci Technol; 2010 Jul; 44(13):4965-72. PubMed ID: 20521810 [TBL] [Abstract][Full Text] [Related]
13. Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions. Shen C; Jin Y; Li B; Zheng W; Huang Y Sci Total Environ; 2014 Jan; 466-467():1094-102. PubMed ID: 24013017 [TBL] [Abstract][Full Text] [Related]
14. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. Torkzaban S; Bradford SA; Vanderzalm JL; Patterson BM; Harris B; Prommer H J Contam Hydrol; 2015 Oct; 181():161-71. PubMed ID: 26141344 [TBL] [Abstract][Full Text] [Related]
15. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Torkzaban S; Bradford SA; van Genuchten MT; Walker SL J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262 [TBL] [Abstract][Full Text] [Related]
16. Quantification of colloid retention and release by straining and energy minima in variably saturated porous media. Sang W; Morales VL; Zhang W; Stoof CR; Gao B; Schatz AL; Zhang Y; Steenhuis TS Environ Sci Technol; 2013 Aug; 47(15):8256-64. PubMed ID: 23805840 [TBL] [Abstract][Full Text] [Related]
17. Contributions of Nanoscale Roughness to Anomalous Colloid Retention and Stability Behavior. Bradford SA; Kim H; Shen C; Sasidharan S; Shang J Langmuir; 2017 Sep; 33(38):10094-10105. PubMed ID: 28846425 [TBL] [Abstract][Full Text] [Related]
18. Causes and implications of colloid and microorganism retention hysteresis. Bradford SA; Kim H J Contam Hydrol; 2012 Sep; 138-139():83-92. PubMed ID: 22820488 [TBL] [Abstract][Full Text] [Related]
19. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Bradford SA; Kim HN; Haznedaroglu BZ; Torkzaban S; Walker SL Environ Sci Technol; 2009 Sep; 43(18):6996-7002. PubMed ID: 19806733 [TBL] [Abstract][Full Text] [Related]
20. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Torkzaban S; Bradford SA; Walker SL Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]