BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 26484737)

  • 41. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry.
    Liu H; Tian Y; Xue C; Niu Q; Chen C; Yan X
    J Extracell Vesicles; 2022 Apr; 11(4):e12206. PubMed ID: 35373518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prospective Use of High-Refractive Index Materials for Single Molecule Detection in Flow Cytometry.
    Welsh JA; Kepley J; Rosner A; Horak P; Berzofsky JA; Jones JC
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of extracellular vesicles by flow cytometry: Challenges and promises.
    Gul B; Syed F; Khan S; Iqbal A; Ahmad I
    Micron; 2022 Oct; 161():103341. PubMed ID: 35985059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mapping Subpopulations of Cancer Cell-Derived Extracellular Vesicles and Particles by Nano-Flow Cytometry.
    Choi D; Montermini L; Jeong H; Sharma S; Meehan B; Rak J
    ACS Nano; 2019 Sep; 13(9):10499-10511. PubMed ID: 31469961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flow Cytometric Analysis of Extracellular Vesicles.
    Morales-Kastresana A; Jones JC
    Methods Mol Biol; 2017; 1545():215-225. PubMed ID: 27943218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In Situ Simultaneous Detection of Surface Protein and microRNA in Clustered Extracellular Vesicles from Cancer Cell Lines Using Flow Cytometry.
    Lee JY; Lee S; Lee H; Tran TTP; Kim BC; Rhee WJ
    ACS Biomater Sci Eng; 2023 Nov; 9(11):6369-6378. PubMed ID: 37905510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry.
    Morales-Kastresana A; Telford B; Musich TA; McKinnon K; Clayborne C; Braig Z; Rosner A; Demberg T; Watson DC; Karpova TS; Freeman GJ; DeKruyff RH; Pavlakis GN; Terabe M; Robert-Guroff M; Berzofsky JA; Jones JC
    Sci Rep; 2017 May; 7(1):1878. PubMed ID: 28500324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An ultracentrifugation - hollow-fiber flow field-flow fractionation orthogonal approach for the purification and mapping of extracellular vesicle subtypes.
    Marassi V; Maggio S; Battistelli M; Stocchi V; Zattoni A; Reschiglian P; Guescini M; Roda B
    J Chromatogr A; 2021 Feb; 1638():461861. PubMed ID: 33472105
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry.
    L Ramos T; Sánchez-Abarca LI; Muntión S; Preciado S; Puig N; López-Ruano G; Hernández-Hernández Á; Redondo A; Ortega R; Rodríguez C; Sánchez-Guijo F; del Cañizo C
    Cell Commun Signal; 2016 Jan; 14():2. PubMed ID: 26754424
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single Extracellular Vesicle Transmembrane Protein Characterization by Nano-Flow Cytometry.
    Lees R; Tempest R; Law A; Aubert D; Davies OG; Williams S; Peake N; Peacock B
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35969098
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of dendritic cell-derived vesicles: high-resolution flow cytometric analysis of extracellular vesicle quantity and quality.
    Nolte-'t Hoen EN; van der Vlist EJ; de Boer-Brouwer M; Arkesteijn GJ; Stoorvogel W; Wauben MH
    J Leukoc Biol; 2013 Mar; 93(3):395-402. PubMed ID: 23248328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoscale flow cytometry for immunophenotyping and quantitating extracellular vesicles in blood plasma.
    Salmond N; Khanna K; Owen GR; Williams KC
    Nanoscale; 2021 Jan; 13(3):2012-2025. PubMed ID: 33449064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An imaging flow cytometry-based methodology for the analysis of single extracellular vesicles in unprocessed human plasma.
    Woud WW; van der Pol E; Mul E; Hoogduijn MJ; Baan CC; Boer K; Merino A
    Commun Biol; 2022 Jun; 5(1):633. PubMed ID: 35768629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry.
    Tian Y; Ma L; Gong M; Su G; Zhu S; Zhang W; Wang S; Li Z; Chen C; Li L; Wu L; Yan X
    ACS Nano; 2018 Jan; 12(1):671-680. PubMed ID: 29300458
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Size Determination and Phenotypic Analysis of Urinary Extracellular Vesicles using Flow Cytometry.
    Navarro-Hernandez IC; Acevedo-Ochoa E; Juárez-Vega G; Meza-Sánchez DE; Hernández-Hernández JM; Maravillas-Montero JL
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33970146
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methods to Analyze EVs.
    Giebel B; Helmbrecht C
    Methods Mol Biol; 2017; 1545():1-20. PubMed ID: 27943203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry.
    Campos-Silva C; Suárez H; Jara-Acevedo R; Linares-Espinós E; Martinez-Piñeiro L; Yáñez-Mó M; Valés-Gómez M
    Sci Rep; 2019 Feb; 9(1):2042. PubMed ID: 30765839
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of Extracellular Vesicles by Flow Cytometry.
    Camacho V; Toxavidis V; Tigges JC
    Methods Mol Biol; 2017; 1660():175-190. PubMed ID: 28828656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags.
    Zhang W; Jiang L; Diefenbach RJ; Campbell DH; Walsh BJ; Packer NH; Wang Y
    ACS Sens; 2020 Mar; 5(3):764-771. PubMed ID: 32134252
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flow Virometry to Analyze Antigenic Spectra of Virions and Extracellular Vesicles.
    Arakelyan A; Fitzgerald W; Zicari S; Vagida M; Grivel JC; Margolis L
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.