BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26484867)

  • 1. Decrease in an Inwardly Rectifying Potassium Conductance in Mouse Mammary Secretory Cells after Forced Weaning.
    Kamikawa A; Sugimoto S; Ichii O; Kondoh D
    PLoS One; 2015; 10(10):e0141131. PubMed ID: 26484867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional expression of a Kir2.1-like inwardly rectifying potassium channel in mouse mammary secretory cells.
    Kamikawa A; Ishikawa T
    Am J Physiol Cell Physiol; 2014 Feb; 306(3):C230-40. PubMed ID: 24259419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inward rectifier K(+) current in human bronchial smooth muscle cells: inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA.
    Oonuma H; Iwasawa K; Iida H; Nagata T; Imuta H; Morita Y; Yamamoto K; Nagai R; Omata M; Nakajima T
    Am J Respir Cell Mol Biol; 2002 Mar; 26(3):371-9. PubMed ID: 11867346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inwardly rectifying K+ channel in bovine parotid acinar cells: possible involvement of Kir2.1.
    Hayashi M; Komazaki S; Ishikawa T
    J Physiol; 2003 Feb; 547(Pt 1):255-69. PubMed ID: 12562923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and functional characterization of inwardly rectifying K
    Huang X; Lee SH; Lu H; Sanders KM; Koh SD
    J Physiol; 2018 Feb; 596(3):379-391. PubMed ID: 29205356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries.
    Qu L; Yu L; Wang Y; Jin X; Zhang Q; Lu P; Yu X; Zhong W; Zheng X; Cui N; Jiang C; Zhu D
    PLoS One; 2015; 10(12):e0145508. PubMed ID: 26700160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weaning-induced expression of a milk-fat globule protein, MFG-E8, in mouse mammary glands, as demonstrated by the analyses of its mRNA, protein and phosphatidylserine-binding activity.
    Nakatani H; Aoki N; Nakagawa Y; Jin-No S; Aoyama K; Oshima K; Ohira S; Sato C; Nadano D; Matsuda T
    Biochem J; 2006 Apr; 395(1):21-30. PubMed ID: 16401186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an inwardly rectifying potassium channel in the rabbit superior lacrimal gland.
    Herok GH; Millar TJ; Anderton PJ; Martin DK
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):308-14. PubMed ID: 9477987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proliferative gliosis causes mislocation and inactivation of inwardly rectifying K(+) (Kir) channels in rabbit retinal glial cells.
    Ulbricht E; Pannicke T; Hollborn M; Raap M; Goczalik I; Iandiev I; Härtig W; Uhlmann S; Wiedemann P; Reichenbach A; Bringmann A; Francke M
    Exp Eye Res; 2008 Feb; 86(2):305-13. PubMed ID: 18078934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional ion channels in mouse bone marrow mesenchymal stem cells.
    Tao R; Lau CP; Tse HF; Li GR
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1561-7. PubMed ID: 17699636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel inwardly rectifying K+ channel, Kir2.5, is upregulated under chronic cold stress in fish cardiac myocytes.
    Hassinen M; Paajanen V; Vornanen M
    J Exp Biol; 2008 Jul; 211(Pt 13):2162-71. PubMed ID: 18552306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the inwardly rectifying K+ channel Kir2.1 in native bovine corneal endothelial cells.
    Yang D; MacCallum DK; Ernst SA; Hughes BA
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3511-9. PubMed ID: 12882801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Kir2.1 channel activity in cultured trabecular meshwork cells.
    Llobet A; Gasull X; Palés J; Martí E; Gual A
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2371-9. PubMed ID: 11527952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia.
    Tang X; Schmidt TM; Perez-Leighton CE; Kofuji P
    Neuroscience; 2010 Mar; 166(2):397-407. PubMed ID: 20074622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional ion channels and cell proliferation in 3T3-L1 preadipocytes.
    Zhang XH; Zhang YY; Sun HY; Jin MW; Li GR
    J Cell Physiol; 2012 May; 227(5):1972-9. PubMed ID: 21732368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Kir2.1 channels in astrocytes under pathophysiological conditions.
    Kang SJ; Cho SH; Park K; Yi J; Yoo SJ; Shin KS
    Mol Cells; 2008 Feb; 25(1):124-30. PubMed ID: 18319624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1.
    Correia MJ; Wood TG; Prusak D; Weng T; Rennie KJ; Wang HQ
    Physiol Genomics; 2004 Oct; 19(2):155-69. PubMed ID: 15316115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-type-independent expression of inwardly rectifying potassium currents in mouse fungiform taste bud cells.
    Nakao Y; Koshimura M; Yamasaki T; Ohtubo Y
    Physiol Res; 2020 Jul; 69(3):501-510. PubMed ID: 32469236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.
    Goldoni D; Zhao Y; Green BD; McDermott BJ; Collins A
    J Cell Physiol; 2010 Nov; 225(3):751-6. PubMed ID: 20568224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.