These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26484894)
1. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Veres P; López-Periago AM; Lázár I; Saurina J; Domingo C Int J Pharm; 2015 Dec; 496(2):360-70. PubMed ID: 26484894 [TBL] [Abstract][Full Text] [Related]
2. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery. Kéri M; Forgács A; Papp V; Bányai I; Veres P; Len A; Dudás Z; Fábián I; Kalmár J Acta Biomater; 2020 Mar; 105():131-145. PubMed ID: 31953196 [TBL] [Abstract][Full Text] [Related]
3. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Smirnova I; Suttiruengwong S; Seiler M; Arlt W Pharm Dev Technol; 2004 Nov; 9(4):443-52. PubMed ID: 15581080 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Veronovski A; Tkalec G; Knez Ž; Novak Z Carbohydr Polym; 2014 Nov; 113():272-8. PubMed ID: 25256485 [TBL] [Abstract][Full Text] [Related]
5. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457 [TBL] [Abstract][Full Text] [Related]
6. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Gonçalves VS; Gurikov P; Poejo J; Matias AA; Heinrich S; Duarte CM; Smirnova I Eur J Pharm Biopharm; 2016 Oct; 107():160-70. PubMed ID: 27393563 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen. Eleftheriadis GK; Filippousi M; Tsachouridou V; Darda MA; Sygellou L; Kontopoulou I; Bouropoulos N; Steriotis T; Charalambopoulou G; Vizirianakis IS; Van Tendeloo G; Fatouros DG Int J Pharm; 2016 Dec; 515(1-2):262-270. PubMed ID: 27717918 [TBL] [Abstract][Full Text] [Related]
8. Aerogels in drug delivery: From design to application. García-González CA; Sosnik A; Kalmár J; De Marco I; Erkey C; Concheiro A; Alvarez-Lorenzo C J Control Release; 2021 Apr; 332():40-63. PubMed ID: 33600880 [TBL] [Abstract][Full Text] [Related]
9. Polysaccharide-based aerogel microspheres for oral drug delivery. García-González CA; Jin M; Gerth J; Alvarez-Lorenzo C; Smirnova I Carbohydr Polym; 2015 Mar; 117():797-806. PubMed ID: 25498702 [TBL] [Abstract][Full Text] [Related]
10. An emerging platform for drug delivery: aerogel based systems. Ulker Z; Erkey C J Control Release; 2014 Mar; 177():51-63. PubMed ID: 24394377 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of drug release from silica-gelatin aerogel-Relationship between matrix structure and release kinetics. Veres P; Kéri M; Bányai I; Lázár I; Fábián I; Domingo C; Kalmár J Colloids Surf B Biointerfaces; 2017 Apr; 152():229-237. PubMed ID: 28113125 [TBL] [Abstract][Full Text] [Related]
12. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique. Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738 [TBL] [Abstract][Full Text] [Related]
13. Tuning bio-aerogel properties. Part 3: Exploring silica-pectin composite aerogels for drug delivery. Groult S; Buwalda S; Budtova T Biomater Adv; 2024 Oct; 163():213954. PubMed ID: 38996543 [TBL] [Abstract][Full Text] [Related]
14. Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property. Mohammadi A; Moghaddas J Turk J Chem; 2020; 44(3):614-633. PubMed ID: 33488181 [TBL] [Abstract][Full Text] [Related]
15. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier. Obaidat RM; Alnaief M; Mashaqbeh H AAPS PharmSciTech; 2018 Jul; 19(5):2226-2236. PubMed ID: 29736886 [TBL] [Abstract][Full Text] [Related]
16. Supersaturated silica-lipid hybrids (super-SLH): An improved solid-state lipid-based oral drug delivery system with enhanced drug loading. Schultz HB; Thomas N; Rao S; Prestidge CA Eur J Pharm Biopharm; 2018 Apr; 125():13-20. PubMed ID: 29277724 [TBL] [Abstract][Full Text] [Related]
17. Formation of nanoporous aerogels from wheat starch. Ubeyitogullari A; Ciftci ON Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and use of organic biodegradable aerogels as drug carriers. Veronovski A; Novak Z; Knez Ž J Biomater Sci Polym Ed; 2012; 23(7):873-86. PubMed ID: 21457617 [TBL] [Abstract][Full Text] [Related]
19. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model. Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612 [TBL] [Abstract][Full Text] [Related]
20. Synergistic hybrid organic-inorganic aerogels. Wang X; Jana SC ACS Appl Mater Interfaces; 2013 Jul; 5(13):6423-9. PubMed ID: 23773123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]