These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26484894)
21. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles. Viganó J; Meirelles AAD; Náthia-Neves G; Baseggio AM; Cunha RL; Maróstica Junior MR; Meireles MAA; Gurikov P; Smirnova I; Martínez J Int J Biol Macromol; 2020 Jul; 155():1060-1068. PubMed ID: 31712155 [TBL] [Abstract][Full Text] [Related]
22. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Verma S; Sharma PK; Malviya R; Das S Curr Pharm Biotechnol; 2024; 25(15):1939-1951. PubMed ID: 38251702 [TBL] [Abstract][Full Text] [Related]
23. Mesochanneled hierarchically porous aluminosiloxane aerogel microspheres as a stable support for pH-responsive controlled drug release. Vazhayal L; Talasila S; Abdul Azeez PM; Solaiappan A ACS Appl Mater Interfaces; 2014 Sep; 6(17):15564-74. PubMed ID: 25130541 [TBL] [Abstract][Full Text] [Related]
24. In-vitro study of Ketoprofen Release from Synthesized Silica Aerogels (as Drug Carriers) and Evaluation of Mathematical Kinetic Release Models. Mohammadian M; Jafarzadeh Kashi TS; Erfan M; Pashaei Soorbaghi F Iran J Pharm Res; 2018; 17(3):818-829. PubMed ID: 30127808 [TBL] [Abstract][Full Text] [Related]
25. Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels. Groult S; Buwalda S; Budtova T Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112148. PubMed ID: 34082959 [TBL] [Abstract][Full Text] [Related]
26. Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Follmann HDM; Oliveira ON; Lazarin-Bidóia D; Nakamura CV; Huang X; Asefa T; Silva R Nanoscale; 2018 Jan; 10(4):1704-1715. PubMed ID: 29308497 [TBL] [Abstract][Full Text] [Related]
27. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Lovskaya D; Menshutina N Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936834 [TBL] [Abstract][Full Text] [Related]
28. Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth. Nagy G; Király G; Veres P; Lázár I; Fábián I; Bánfalvi G; Juhász I; Kalmár J Int J Pharm; 2019 Mar; 558():396-403. PubMed ID: 30664996 [TBL] [Abstract][Full Text] [Related]
29. Potential of amorphous microporous silica for ibuprofen controlled release. Aerts CA; Verraedt E; Depla A; Follens L; Froyen L; Van Humbeeck J; Augustijns P; Van den Mooter G; Mellaerts R; Martens JA Int J Pharm; 2010 Sep; 397(1-2):84-91. PubMed ID: 20619331 [TBL] [Abstract][Full Text] [Related]
30. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Groult S; Buwalda S; Budtova T Biomater Adv; 2022 Apr; 135():212732. PubMed ID: 35929208 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Wei S; Ching YC; Chuah CH Carbohydr Polym; 2020 Mar; 231():115744. PubMed ID: 31888854 [TBL] [Abstract][Full Text] [Related]
32. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases. Rao S; Richter K; Nguyen TH; Boyd BJ; Porter CJ; Tan A; Prestidge CA Mol Pharm; 2015 Dec; 12(12):4424-33. PubMed ID: 26523928 [TBL] [Abstract][Full Text] [Related]
33. Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation. Marizza P; Keller SS; Müllertz A; Boisen A J Control Release; 2014 Jan; 173():1-9. PubMed ID: 24096018 [TBL] [Abstract][Full Text] [Related]
34. Structure-directing agents for the synthesis of TiO(2) -based drug-delivery systems. Ghedini E; Nichele V; Signoretto M; Cerrato G Chemistry; 2012 Aug; 18(34):10653-60. PubMed ID: 22767402 [TBL] [Abstract][Full Text] [Related]
35. Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. Tang C; Guan YX; Yao SJ; Zhu ZQ Int J Pharm; 2014 Oct; 473(1-2):434-41. PubMed ID: 25079432 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopic and chromatographic characterization of triflusal delivery systems prepared by using supercritical impregnation technologies. Argemí A; López-Periago A; Domingo C; Saurina J J Pharm Biomed Anal; 2008 Feb; 46(3):456-62. PubMed ID: 18093783 [TBL] [Abstract][Full Text] [Related]
37. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Bhandari J; Mishra H; Mishra PK; Wimmer R; Ahmad FJ; Talegaonkar S Int J Nanomedicine; 2017; 12():2021-2031. PubMed ID: 28352172 [TBL] [Abstract][Full Text] [Related]
38. Increasing the bioavailability of curcumin using a green supercritical fluid technology-assisted approach based on simultaneous starch aerogel formation-curcumin impregnation. Alavi F; Ciftci ON Food Chem; 2024 Oct; 455():139468. PubMed ID: 38850979 [TBL] [Abstract][Full Text] [Related]
39. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. Zhao J; Lu C; He X; Zhang X; Zhang W; Zhang X ACS Appl Mater Interfaces; 2015 Feb; 7(4):2607-15. PubMed ID: 25562313 [TBL] [Abstract][Full Text] [Related]
40. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate. Zhu W; Wan L; Zhang C; Gao Y; Zheng X; Jiang T; Wang S Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():78-85. PubMed ID: 24268236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]