These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26485023)
1. Using Agent-Based Modelling to Predict the Role of Wild Refugia in the Evolution of Resistance of Sea Lice to Chemotherapeutants. McEwan GF; Groner ML; Fast MD; Gettinby G; Revie CW PLoS One; 2015; 10(10):e0139128. PubMed ID: 26485023 [TBL] [Abstract][Full Text] [Related]
2. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate. Messmer AM; Leong JS; Rondeau EB; Mueller A; Despins CA; Minkley DR; Kent MP; Lien S; Boyce B; Morrison D; Fast MD; Norman JD; Danzmann RG; Koop BF Mar Genomics; 2018 Jul; 40():45-57. PubMed ID: 29673959 [TBL] [Abstract][Full Text] [Related]
3. Managing aquatic parasites for reduced drug resistance: lessons from the land. McEwan GF; Groner ML; Burnett DL; Fast MD; Revie CW J R Soc Interface; 2016 Dec; 13(125):. PubMed ID: 28003529 [TBL] [Abstract][Full Text] [Related]
4. Wild salmonids and sea louse infestations on the west coast of Scotland: sources of infection and implications for the management of marine salmon farms. Butler JR Pest Manag Sci; 2002 Jun; 58(6):595-608; discussion 622-9. PubMed ID: 12138626 [TBL] [Abstract][Full Text] [Related]
5. Analysis and management of resistance to chemotherapeutants in salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae). Denholm I; Devine GJ; Horsberg TE; Sevatdal S; Fallang A; Nolan DV; Powell R Pest Manag Sci; 2002 Jun; 58(6):528-36. PubMed ID: 12138619 [TBL] [Abstract][Full Text] [Related]
6. Modelling sea lice control by lumpfish on Atlantic salmon farms: interactions with mate limitation, temperature and treatment rules. McEwan GF; Groner ML; Cohen AAB; Imsland AKD; Revie CW Dis Aquat Organ; 2019 Feb; 133(1):69-82. PubMed ID: 31089004 [TBL] [Abstract][Full Text] [Related]
7. The mechanism (Phe362Tyr mutation) behind resistance in Lepeophtheirus salmonis pre-dates organophosphate use in salmon farming. Kaur K; Besnier F; Glover KA; Nilsen F; Aspehaug VT; Fjørtoft HB; Horsberg TE Sci Rep; 2017 Sep; 7(1):12349. PubMed ID: 28955050 [TBL] [Abstract][Full Text] [Related]
8. Salmon lice--impact on wild salmonids and salmon aquaculture. Torrissen O; Jones S; Asche F; Guttormsen A; Skilbrei OT; Nilsen F; Horsberg TE; Jackson D J Fish Dis; 2013 Mar; 36(3):171-94. PubMed ID: 23311858 [TBL] [Abstract][Full Text] [Related]
9. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast. Price MH; Proboszcz SL; Routledge RD; Gottesfeld AS; Orr C; Reynolds JD PLoS One; 2011 Feb; 6(2):e16851. PubMed ID: 21347456 [TBL] [Abstract][Full Text] [Related]
10. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Costello MJ Proc Biol Sci; 2009 Oct; 276(1672):3385-94. PubMed ID: 19586950 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization and functional analysis of components of the TOR pathway of the salmon louse, Lepeophtheirus salmonis (Krøyer, 1838). Sandlund L; Kongshaug H; Nilsen F; Dalvin S Exp Parasitol; 2018 May; 188():83-92. PubMed ID: 29625096 [TBL] [Abstract][Full Text] [Related]
12. Sea lice population and sex differences in P-glycoprotein expression and emamectin benzoate resistance on salmon farms in the Bay of Fundy, New Brunswick, Canada. Igboeli OO; Burka JF; Fast MD Pest Manag Sci; 2014 Jun; 70(6):905-14. PubMed ID: 23913539 [TBL] [Abstract][Full Text] [Related]
13. The control of sea lice in Atlantic salmon by selective breeding. Gharbi K; Matthews L; Bron J; Roberts R; Tinch A; Stear M J R Soc Interface; 2015 Sep; 12(110):0574. PubMed ID: 26289656 [TBL] [Abstract][Full Text] [Related]
14. A model of salmon louse production in Norway: effects of increasing salmon production and public management measures. Heuch PA; Mo TA Dis Aquat Organ; 2001 Jun; 45(2):145-52. PubMed ID: 11463102 [TBL] [Abstract][Full Text] [Related]
15. Molecular cloning and characterisation of a novel P-glycoprotein in the salmon louse Lepeophtheirus salmonis. Heumann J; Carmichael S; Bron JE; Tildesley A; Sturm A Comp Biochem Physiol C Toxicol Pharmacol; 2012 Mar; 155(2):198-205. PubMed ID: 21867772 [TBL] [Abstract][Full Text] [Related]
16. Relationship of farm salmon, sea lice, and wild salmon populations. Marty GD; Saksida SM; Quinn TJ Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22599-604. PubMed ID: 21149706 [TBL] [Abstract][Full Text] [Related]
17. Declining wild salmon populations in relation to parasites from farm salmon. Krkosek M; Ford JS; Morton A; Lele S; Myers RA; Lewis MA Science; 2007 Dec; 318(5857):1772-5. PubMed ID: 18079401 [TBL] [Abstract][Full Text] [Related]
18. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms. Kristoffersen AB; Jimenez D; Viljugrein H; Grøntvedt R; Stien A; Jansen PA Epidemics; 2014 Dec; 9():31-9. PubMed ID: 25480132 [TBL] [Abstract][Full Text] [Related]
19. Candidate genes for monitoring hydrogen peroxide resistance in the salmon louse, Lepeophtheirus salmonis. Agusti-Ridaura C; Bakke MJ; Helgesen KO; Sundaram AYM; Bakke SJ; Kaur K; Horsberg TE Parasit Vectors; 2020 Jul; 13(1):344. PubMed ID: 32650825 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide survey of cytochrome P450 genes in the salmon louse Lepeophtheirus salmonis (Krøyer, 1837). Humble JL; Carmona-Antoñanzas G; McNair CM; Nelson DR; Bassett DI; Egholm I; Bron JE; Bekaert M; Sturm A Parasit Vectors; 2019 Nov; 12(1):563. PubMed ID: 31775848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]