These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26485039)

  • 21. Control of trunk motion following sudden stop perturbations during cart pushing.
    Lee YJ; Hoozemans MJ; van Dieën JH
    J Biomech; 2011 Jan; 44(1):121-7. PubMed ID: 20869060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of pushing height on trunk posture and trunk muscle activity when a cart suddenly starts or stops moving.
    Lee YJ; Hoozemans MJ; van Dieën JH
    Work; 2012; 41 Suppl 1():3189-95. PubMed ID: 22317202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of ground and load on upper trapezius, biceps brachii muscle and hand forces in one- and two-wheeled wheelbarrow pushing.
    Lin YH; Lu SY
    Appl Ergon; 2020 Oct; 88():103151. PubMed ID: 32678772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forearm posture and grip effects during push and pull tasks.
    Di Domizio J; Keir PJ
    Ergonomics; 2010 Mar; 53(3):336-43. PubMed ID: 20191408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pushing and pulling: personal mechanics influence spine loads.
    Lett KK; McGill SM
    Ergonomics; 2006 Jul; 49(9):895-908. PubMed ID: 16801235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effects of Ramp Gradients and Pushing-Pulling Techniques on Lumbar Spinal Load in Healthy Workers.
    Pinupong C; Jalayondeja W; Mekhora K; Bhuanantanondh P; Jalayondeja C
    Saf Health Work; 2020 Sep; 11(3):307-313. PubMed ID: 32995056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of hand force variation on shoulder muscle activation during submaximal exertions.
    Meszaros KA; Vidt ME; Dickerson CR
    Int J Occup Saf Ergon; 2018 Mar; 24(1):100-110. PubMed ID: 28007019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical loading of the low back and shoulders during pushing and pulling activities.
    Hoozemans MJ; Kuijer PP; Kingma I; van Dieën JH; de Vries WH; van der Woude LH; Veeger DJ; van der Beek AJ; Frings-Dresen MH
    Ergonomics; 2004 Jan; 47(1):1-18. PubMed ID: 14660215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An ergonomic assessment of using laterally-tilting operating room tables and friction reducing devices for patient lateral transfers.
    Al-Qaisi SK; El Tannir A; Younan LA; Kaddoum RN
    Appl Ergon; 2020 Sep; 87():103122. PubMed ID: 32501251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oblique abdominal muscle activity in response to external perturbations when pushing a cart.
    Lee YJ; Hoozemans MJ; van Dieën JH
    J Biomech; 2010 May; 43(7):1364-72. PubMed ID: 20170918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of uphill walking with varying grade and speed during load carriage on muscle activity.
    Paul S; Bhattacharyya D; Chatterjee T; Majumdar D
    Ergonomics; 2016 Apr; 59(4):514-25. PubMed ID: 26189550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maximum strength levels for pulling and pushing handleless cartons in warehousing tasks.
    Chen YL; Ho TK; Chen KL
    Ergonomics; 2021 Sep; 64(9):1174-1182. PubMed ID: 33938408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Interhandle Distance During Pushing and Pulling of a Four-Caster Cart for Upper Limb Exertion.
    Ohnishi A; Takanokura M; Sugama A
    Saf Health Work; 2016 Sep; 7(3):237-43. PubMed ID: 27630794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trunk muscle control in response to (un)expected turns in cart pushing.
    Lee YJ; Hoozemans MJ; van Dieën JH
    Gait Posture; 2012 May; 36(1):133-8. PubMed ID: 22406290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of walking speed on electromyographic activity of the rectus abdominis and erector spinae during high-heeled walking.
    Nam SJ; Kim MJ; Yim SJ; Oh DW; Park HJ; Kim CY
    J Back Musculoskelet Rehabil; 2014; 27(3):355-60. PubMed ID: 24561783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electromyographic mapping of the erector spinae muscle with varying load and during sustained contraction.
    Tucker K; Falla D; Graven-Nielsen T; Farina D
    J Electromyogr Kinesiol; 2009 Jun; 19(3):373-9. PubMed ID: 18061480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks.
    Abdoli-E M; Agnew MJ; Stevenson JM
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):456-65. PubMed ID: 16494978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking.
    Chiu MC; Wang MJ
    Gait Posture; 2007 Mar; 25(3):385-92. PubMed ID: 16814548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.
    Marras WS; Knapik GG; Ferguson S
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.