BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 26485092)

  • 1. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles.
    Oetting WS; Schladt DP; Guan W; Miller MB; Remmel RP; Dorr C; Sanghavi K; Mannon RB; Herrera B; Matas AJ; Salomon DR; Kwok PY; Keating BJ; Israni AK; Jacobson PA;
    Am J Transplant; 2016 Feb; 16(2):574-82. PubMed ID: 26485092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tacrolimus trough and dose intra-patient variability and CYP3A5 genotype: Effects on acute rejection and graft failure in European American and African American kidney transplant recipients.
    Seibert SR; Schladt DP; Wu B; Guan W; Dorr C; Remmel RP; Matas AJ; Mannon RB; Israni AK; Oetting WS; Jacobson PA
    Clin Transplant; 2018 Dec; 32(12):e13424. PubMed ID: 30318646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients.
    Oetting WS; Wu B; Schladt DP; Guan W; Remmel RP; Mannon RB; Matas AJ; Israni AK; Jacobson PA
    Pharmacogenomics J; 2018 May; 18(3):501-505. PubMed ID: 29160300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Randomized Controlled Trial Comparing the Efficacy of Cyp3a5 Genotype-Based With Body-Weight-Based Tacrolimus Dosing After Living Donor Kidney Transplantation.
    Shuker N; Bouamar R; van Schaik RH; Clahsen-van Groningen MC; Damman J; Baan CC; van de Wetering J; Rowshani AT; Weimar W; van Gelder T; Hesselink DA
    Am J Transplant; 2016 Jul; 16(7):2085-96. PubMed ID: 26714287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Results of ASERTAA, a Randomized Prospective Crossover Pharmacogenetic Study of Immediate-Release Versus Extended-Release Tacrolimus in African American Kidney Transplant Recipients.
    Trofe-Clark J; Brennan DC; West-Thielke P; Milone MC; Lim MA; Neubauer R; Nigro V; Bloom RD
    Am J Kidney Dis; 2018 Mar; 71(3):315-326. PubMed ID: 29162334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen.
    Woillard JB; Gatault P; Picard N; Arnion H; Anglicheau D; Marquet P
    Am J Transplant; 2018 Dec; 18(12):2905-2913. PubMed ID: 29689130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium.
    Jacobson PA; Oetting WS; Brearley AM; Leduc R; Guan W; Schladt D; Matas AJ; Lamba V; Julian BA; Mannon RB; Israni A;
    Transplantation; 2011 Feb; 91(3):300-8. PubMed ID: 21206424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients.
    Oetting WS; Wu B; Schladt DP; Guan W; Remmel RP; Dorr C; Mannon RB; Matas AJ; Israni AK; Jacobson PA
    Pharmacogenomics; 2018 Feb; 19(3):175-184. PubMed ID: 29318894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of CYP3A5 genomic variances on clinical outcomes among African American kidney transplant recipients.
    Asempa TE; Rebellato LM; Hudson S; Briley K; Maldonado AQ
    Clin Transplant; 2018 Jan; 32(1):. PubMed ID: 29161757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups.
    Mohamed ME; Schladt DP; Guan W; Wu B; van Setten J; Keating BJ; Iklé D; Remmel RP; Dorr CR; Mannon RB; Matas AJ; Israni AK; Oetting WS; Jacobson PA;
    Am J Transplant; 2019 Oct; 19(10):2795-2804. PubMed ID: 30953600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients.
    Sanghavi K; Brundage RC; Miller MB; Schladt DP; Israni AK; Guan W; Oetting WS; Mannon RB; Remmel RP; Matas AJ; Jacobson PA
    Pharmacogenomics J; 2017 Jan; 17(1):61-68. PubMed ID: 26667830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the CYP3A5 genotype on the distributions of dose-adjusted trough concentrations and incidence of rejection in Japanese renal transplant recipients receiving different tacrolimus formulations.
    Niioka T; Kagaya H; Saito M; Inoue T; Numakura K; Yamamoto R; Habuchi T; Satoh S; Miura M
    Clin Exp Nephrol; 2017 Oct; 21(5):787-796. PubMed ID: 28271256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing.
    Dorr CR; Wu B; Remmel RP; Muthusamy A; Schladt DP; Abrahante JE; Guan W; Mannon RB; Matas AJ; Oetting WS; Jacobson PA; Israni AK;
    Pharmacogenomics J; 2019 Aug; 19(4):375-389. PubMed ID: 30442921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Genomic Architecture of the CYP3A Locus and ADME Genes for Personalized Tacrolimus Dosing.
    Yoon JG; Song SH; Choi S; Oh J; Jang IJ; Kim YJ; Moon S; Kim BJ; Cho Y; Kim HK; Min S; Ha J; Shin HS; Yang CW; Yoon HE; Yang J; Lee MG; Park JB; Kim MS;
    Transplantation; 2021 Oct; 105(10):2213-2225. PubMed ID: 33654003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Donor and recipient P450 gene polymorphisms influence individual pharmacological effects of tacrolimus in Chinese liver transplantation patients.
    Liu J; Ouyang Y; Chen D; Yao B; Lin D; Li Z; Zang Y; Liu H; Fu X
    Int Immunopharmacol; 2018 Apr; 57():18-24. PubMed ID: 29454235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tacrolimus Population Pharmacokinetics and Multiple CYP3A5 Genotypes in Black and White Renal Transplant Recipients.
    Campagne O; Mager DE; Brazeau D; Venuto RC; Tornatore KM
    J Clin Pharmacol; 2018 Sep; 58(9):1184-1195. PubMed ID: 29775201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of CYP3A5 Genomic Variances and Their Impact on Tacrolimus Dosing Requirements among Kidney Transplant Recipients in Eastern North Carolina.
    Maldonado AQ; Asempa T; Hudson S; Rebellato LM
    Pharmacotherapy; 2017 Sep; 37(9):1081-1088. PubMed ID: 28605053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYP3A5 genotype affects time to therapeutic tacrolimus level in pediatric kidney transplant recipients.
    Yanik MV; Seifert ME; Locke JE; Hauptfeld-Dolejsek V; Crowley MR; Cutter GR; Mannon RB; Feig DI; Limdi NA
    Pediatr Transplant; 2019 Aug; 23(5):e13494. PubMed ID: 31124575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of CYP3A5 Genetic Polymorphism on Long-Term Renal Function in Chinese Kidney Transplant Recipients Using Limited Sampling Strategy and Abbreviated Area Under the Curve for Tacrolimus Monitoring.
    Cheung CY; Chan KM; Wong YT; Chak WL; Bekers O; van Hooff JP
    Prog Transplant; 2020 Sep; 30(3):249-253. PubMed ID: 32552577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of tacrolimus and cyclosporin A in CYP3A5 expressing Chinese de novo kidney transplant recipients: a 2-year prospective study.
    Liu LS; Li J; Chen XT; Zhang HX; Fu Q; Wang HY; Xiong YY; Liu S; Liu XM; Li JL; Huang M; Wang CX
    Int J Clin Pract Suppl; 2015 May; (183):43-52. PubMed ID: 26177348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.