BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26485308)

  • 1. Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers.
    Ma R; Kang B; Cho S; Choi M; Baik S
    ACS Nano; 2015 Nov; 9(11):10876-86. PubMed ID: 26485308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual strain-dependent thermal conductivity modulation of silver nanoflower-polyurethane fibers.
    Jan AA; Suh D; Bae S; Baik S
    Nanoscale; 2018 Sep; 10(37):17799-17806. PubMed ID: 30215658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.
    Lu Y; Jiang J; Yoon S; Kim KS; Kim JH; Park S; Kim SH; Piao L
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2093-2104. PubMed ID: 29277998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics.
    Wang C; Zhang M; Xia K; Gong X; Wang H; Yin Z; Guan B; Zhang Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13331-13338. PubMed ID: 28345872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.
    Cheng Y; Wang R; Sun J; Gao L
    ACS Nano; 2015 Apr; 9(4):3887-95. PubMed ID: 25808756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Conductivity in Highly Stretchable Silver and Polymer Nanocomposite Conductors.
    Jin Nam H; Sun Kim Y; Jin Kim Y; Nam SY; Choa SH
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3218-3226. PubMed ID: 34739777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable Conductive Composites from Cu-Ag Nanowire Felt.
    Catenacci MJ; Reyes C; Cruz MA; Wiley BJ
    ACS Nano; 2018 Apr; 12(4):3689-3698. PubMed ID: 29537819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration.
    C MA; K P F; Singh S; Baik S
    Sci Rep; 2016 Oct; 6():34894. PubMed ID: 27713510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Capillary Spooling of Conductive Polyurethane-Silver Core-Sheath (PU@Ag) Microfibers for Highly Stretchable Interconnects.
    Son HJ; Kim HJ; Jeong S; Ahn Y; Yang H; Park M
    ACS Appl Mater Interfaces; 2023 May; 15(18):22574-22579. PubMed ID: 37104725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.
    Wu X; Han Y; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23007-23016. PubMed ID: 28636322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knitted fabrics made from highly conductive stretchable fibers.
    Ma R; Lee J; Choi D; Moon H; Baik S
    Nano Lett; 2014; 14(4):1944-51. PubMed ID: 24661242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires.
    Cao Z; Wang R; He T; Xu F; Sun J
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14087-14096. PubMed ID: 29613767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically Conducting Elastomeric Fibers with High Stretchability and Stability.
    Zokaei S; Craighero M; Cea C; Kneissl LM; Kroon R; Khodagholy D; Lund A; Müller C
    Small; 2022 Feb; 18(5):e2102813. PubMed ID: 34816573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable and Weldable Superelastic EGaIn/TPU Composite Fiber by Wet Spinning for Flexible Electronics.
    Zhou J; Zhao S; Tang L; Zhang D; Sheng B
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38031357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
    Tang Z; Jia S; Wang F; Bian C; Chen Y; Wang Y; Li B
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6624-6635. PubMed ID: 29384359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive and Stretchable Polyurethane Fiber Strain Sensors with Embedded Silver Nanowires.
    Zhu GJ; Ren PG; Guo H; Jin YL; Yan DX; Li ZM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23649-23658. PubMed ID: 31252483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors.
    He Z; Zhou G; Byun JH; Lee SK; Um MK; Park B; Kim T; Lee SB; Chou TW
    Nanoscale; 2019 Mar; 11(13):5884-5890. PubMed ID: 30869716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver Nanoflower Decorated Graphene Oxide Sponges for Highly Sensitive Variable Stiffness Stress Sensors.
    Khan FA; Ajmal CM; Bae S; Seo S; Moon H; Baik S
    Small; 2018 Jun; 14(24):e1800549. PubMed ID: 29756315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Superior Method for Constructing Electrical Percolation Network of Nanocomposite Fibers: In Situ Thermally Reduced Silver Nanoparticles.
    Ajmal CM; Bae S; Baik S
    Small; 2019 Jan; 15(1):e1803255. PubMed ID: 30515984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive and Elastic 3D Helical Fibers for Use in Washable and Wearable Electronics.
    Yang Z; Zhai Z; Song Z; Wu Y; Liang J; Shan Y; Zheng J; Liang H; Jiang H
    Adv Mater; 2020 Mar; 32(10):e1907495. PubMed ID: 31984556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.