These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2648534)

  • 81. Intracellular expression of toxic shock syndrome toxin 1 in Saccharomyces cerevisiae.
    Deresiewicz RL; Flaxenburg JA; Chan M; Finberg RW; Kasper DL
    Infect Immun; 1994 Jun; 62(6):2202-7. PubMed ID: 8188341
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Production of staphylococcal enterotoxin in mixed cultures.
    Noleto AL; Malburg Júnior LM; Bergdoll MS
    Appl Environ Microbiol; 1987 Oct; 53(10):2271-4. PubMed ID: 3122653
    [TBL] [Abstract][Full Text] [Related]  

  • 83. TSST-1 production by Staphylococcus aureus subsp. anaerobius.
    Goyache J; Ruiz-Santa Quiteria JA; Orden JA; Hernandez FJ; Gómez-Lucía E; de la Fuente R; Bergdoll MS; Suárez G
    Res Microbiol; 1990; 141(9):1073-6. PubMed ID: 2092359
    [No Abstract]   [Full Text] [Related]  

  • 84. Chromosomal mapping of a gene affecting enterotoxin A production in Staphylococcus aureus.
    Mallonee DH; Glatz BA; Pattee PA
    Appl Environ Microbiol; 1982 Feb; 43(2):397-402. PubMed ID: 6277247
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Identification of a chromosomal determinant of enterotoxin A production in Staphylococcus aureus.
    Pattee PA; Glatz BA
    Appl Environ Microbiol; 1980 Jan; 39(1):186-93. PubMed ID: 7356315
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction.
    Chen L; Chen M; Ma C; Zeng AP
    Metab Eng; 2018 May; 47():434-444. PubMed ID: 29733896
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparative analysis of Staphylococcus aureus and Escherichia coli microcalorimetric growth.
    Zaharia DC; Muntean AA; Popa MG; Steriade AT; Balint O; Micut R; Iftene C; Tofolean I; Popa VT; Baicus C; Bogdan MA; Popa MI
    BMC Microbiol; 2013 Jul; 13():171. PubMed ID: 23879872
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Comparative behavior of E. coli and S. aureus regarding attachment to and removal from a polymeric surface.
    Magnotta S; Bogucki A; Vieth RF; Coughlin RW
    J Biomater Sci Polym Ed; 1997; 8(9):683-9. PubMed ID: 9257181
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli.
    Schmid JW; Mauch K; Reuss M; Gilles ED; Kremling A
    Metab Eng; 2004 Oct; 6(4):364-77. PubMed ID: 15491865
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Bivariate genome-wide association study of the growth plasticity of Staphylococcus aureus in coculture with Escherichia coli.
    Zheng X; Bai J; Ye M; Liu Y; Jin Y; He X
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5437-5447. PubMed ID: 32350560
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Dye labelled monoclonal antibody assay for detection of Toxic Shock Syndrome Toxin -1 from Staphylococcus aureus.
    Javid KV; Foster H
    Iran J Microbiol; 2011 Dec; 3(4):170-6. PubMed ID: 22530084
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields.
    Zituni D; Schütt-Gerowitt H; Kopp M; Krönke M; Addicks K; Hoffmann C; Hellmich M; Faber F; Niedermeier W
    Int J Oral Sci; 2014 Mar; 6(1):7-14. PubMed ID: 24008271
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Tryptophan-Based Self-Assembling Peptides with Bacterial Flocculation and Antimicrobial Properties.
    Zhang J; Liu S; Li H; Tian X; Li X
    Langmuir; 2020 Sep; 36(38):11316-11323. PubMed ID: 32907333
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Detection of antimetabolite activity: effects and transport of tryptophan analogs in Escherichia coli.
    Kuhn J
    Antimicrob Agents Chemother; 1977 Sep; 12(3):322-7. PubMed ID: 334061
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Enzymatic studies with a series of tryptophan auxotrophs of Escherichia coli.
    YANOFSKY C
    J Biol Chem; 1957 Feb; 224(2):783-92. PubMed ID: 13405907
    [No Abstract]   [Full Text] [Related]  

  • 96. Observations on the formation of a pigment by strains of Escherichia coli.
    Benjamin AM; Tamhane DV
    Arch Mikrobiol; 1966 Mar; 53(3):242-7. PubMed ID: 4865682
    [No Abstract]   [Full Text] [Related]  

  • 97. Interaction analyses based on growth parameters of GWAS between Escherichia coli and Staphylococcus aureus.
    Liang Y; Li B; Zhang Q; Zhang S; He X; Jiang L; Jin Y
    AMB Express; 2021 Mar; 11(1):34. PubMed ID: 33646434
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A transduction analysis of complex loci governing the synthesis of tryptophan by Staphylococcus aureus.
    RITZ HL; BALDWIN JN
    Proc Soc Exp Biol Med; 1962; 110():667-71. PubMed ID: 14492528
    [No Abstract]   [Full Text] [Related]  

  • 99. Genetic analysis of lysine auxotrophs of Staphylococcus aureus.
    Barnes IJ; Bondi A; Fuscaldo KE
    J Bacteriol; 1971 Feb; 105(2):553-5. PubMed ID: 5541532
    [TBL] [Abstract][Full Text] [Related]  

  • 100. CHEMICAL STUDIES ON HOST-VIRUS INTERACTIONS : II. THE CHEMICAL SIMULATION OF THE INTERFERENCE PHENOMENON BY 5-METHYL TRYPTOPHANE.
    Cohen SS; Anderson TF
    J Exp Med; 1946 Oct; 84(5):525-33. PubMed ID: 19871585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.