These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26485434)

  • 1. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.
    Bouchon C; Nazzi T; Gervain J
    PLoS One; 2015; 10(10):e0140160. PubMed ID: 26485434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural processing of repetition and non-repetition grammars in 7- and 9-month-old infants.
    Wagner JB; Fox SE; Tager-Flusberg H; Nelson CA
    Front Psychol; 2011; 2():168. PubMed ID: 21811483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentangling the effects of phonation and articulation: hemispheric asymmetries in the auditory N1m response of the human brain.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    BMC Neurosci; 2005 Oct; 6():62. PubMed ID: 16225699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neonate brain's sensitivity to repetition-based structure: Specific to speech?
    Nallet C; Berent I; Werker JF; Gervain J
    Dev Sci; 2023 Nov; 26(6):e13408. PubMed ID: 37138509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain regions and functional interactions supporting early word recognition in the face of input variability.
    Benavides-Varela S; Siugzdaite R; Gómez DM; Macagno F; Cattarossi L; Mehler J
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7588-7593. PubMed ID: 28674020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemispheric lateralization of linguistic prosody recognition in comparison to speech and speaker recognition.
    Kreitewolf J; Friederici AD; von Kriegstein K
    Neuroimage; 2014 Nov; 102 Pt 2():332-44. PubMed ID: 25087482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct hemispheric specializations for native and non-native languages in one-day-old newborns identified by fNIRS.
    Vannasing P; Florea O; González-Frankenberger B; Tremblay J; Paquette N; Safi D; Wallois F; Lepore F; Béland R; Lassonde M; Gallagher A
    Neuropsychologia; 2016 Apr; 84():63-9. PubMed ID: 26851309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemispheric specialization for processing auditory nonspeech stimuli.
    Jamison HL; Watkins KE; Bishop DV; Matthews PM
    Cereb Cortex; 2006 Sep; 16(9):1266-75. PubMed ID: 16280465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in the brain response to speech during the first year of life: A near-infrared spectroscopy study of dutch-learning infants.
    Zhang F; Gervain J; Roeyers H
    Infant Behav Dev; 2022 May; 67():101724. PubMed ID: 35640398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hearing faces: how the infant brain matches the face it sees with the speech it hears.
    Bristow D; Dehaene-Lambertz G; Mattout J; Soares C; Gliga T; Baillet S; Mangin JF
    J Cogn Neurosci; 2009 May; 21(5):905-21. PubMed ID: 18702595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal dynamics of repetition suppression to individual faces presented at a fast periodic rate.
    Nemrodov D; Jacques C; Rossion B
    Int J Psychophysiol; 2015 Oct; 98(1):35-43. PubMed ID: 26113059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual routes for verbal repetition: articulation-based and acoustic-phonetic codes for pseudoword and word repetition, respectively.
    Yoo S; Chung JY; Jeon HA; Lee KM; Kim YB; Cho ZH
    Brain Lang; 2012 Jul; 122(1):1-10. PubMed ID: 22632812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory support for rapid frequency change processing in infants.
    Musacchia G; Choudhury NA; Ortiz-Mantilla S; Realpe-Bonilla T; Roesler CP; Benasich AA
    Neuropsychologia; 2013 Nov; 51(13):2812-24. PubMed ID: 24055540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody.
    Ethofer T; Kreifelts B; Wiethoff S; Wolf J; Grodd W; Vuilleumier P; Wildgruber D
    J Cogn Neurosci; 2009 Jul; 21(7):1255-68. PubMed ID: 18752404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect.
    Westerhausen R; Kompus K; Hugdahl K
    Neuroimage; 2014 Jan; 84():962-70. PubMed ID: 24121087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERP evidence for hemispheric asymmetries in abstract but not exemplar-specific repetition priming.
    Küper K; Liesefeld AM; Zimmer HD
    Psychophysiology; 2015 Dec; 52(12):1610-9. PubMed ID: 26399379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.
    Gu F; Zhang C; Hu A; Zhao G
    Neuroimage; 2013 Dec; 83():637-45. PubMed ID: 23856710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orienting asymmetries and lateralized processing of sounds in humans.
    Fischer J; Teufel C; Drolet M; Patzelt A; Rübsamen R; von Cramon DY; Schubotz RI
    BMC Neurosci; 2009 Feb; 10():14. PubMed ID: 19239700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change.
    Okamoto H; Stracke H; Draganova R; Pantev C
    Cereb Cortex; 2009 Oct; 19(10):2290-7. PubMed ID: 19136454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemispheric differences in the recognition of environmental sounds.
    González J; McLennan CT
    Psychol Sci; 2009 Jul; 20(7):887-94. PubMed ID: 19515117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.