These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26485435)

  • 1. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.
    Huang YB; Hu CR; Zhang L; Yin W; Hu B
    PLoS One; 2015; 10(10):e0140752. PubMed ID: 26485435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo.
    Zhang L; Huang Y; Hu B
    Sci Rep; 2016 Oct; 6():35009. PubMed ID: 27713557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.
    McDole B; Isgor C; Pare C; Guthrie K
    Neuroscience; 2015 Sep; 304():146-60. PubMed ID: 26211445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb.
    Breton-Provencher V; Bakhshetyan K; Hardy D; Bammann RR; Cavarretta F; Snapyan M; Côté D; Migliore M; Saghatelyan A
    Nat Commun; 2016 Aug; 7():12659. PubMed ID: 27578235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb.
    Sailor KA; Valley MT; Wiechert MT; Riecke H; Sun GJ; Adams W; Dennis JC; Sharafi S; Ming GL; Song H; Lledo PM
    Neuron; 2016 Jul; 91(2):384-96. PubMed ID: 27373833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons.
    Yoshihara S; Takahashi H; Nishimura N; Kinoshita M; Asahina R; Kitsuki M; Tatsumi K; Furukawa-Hibi Y; Hirai H; Nagai T; Yamada K; Tsuboi A
    Cell Rep; 2014 Aug; 8(3):843-57. PubMed ID: 25088421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of dendritic spines on hippocampal inhibitory neurons.
    Scheuss V; Bonhoeffer T
    Cereb Cortex; 2014 Dec; 24(12):3142-53. PubMed ID: 23825320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of dendrodendritic microcircuits following mitral cell loss in the olfactory bulb of the murine mutant Purkinje cell degeneration.
    Greer CA; Halász N
    J Comp Neurol; 1987 Feb; 256(2):284-98. PubMed ID: 3558882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Golgi analyses of dendritic organization among denervated olfactory bulb granule cells.
    Greer CA
    J Comp Neurol; 1987 Mar; 257(3):442-52. PubMed ID: 2435770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression.
    Guirado R; Perez-Rando M; Sanchez-Matarredona D; Castillo-Gómez E; Liberia T; Rovira-Esteban L; Varea E; Crespo C; Blasco-Ibáñez JM; Nacher J
    Cereb Cortex; 2014 Nov; 24(11):3014-24. PubMed ID: 23780867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb.
    Mizrahi A
    Nat Neurosci; 2007 Apr; 10(4):444-52. PubMed ID: 17369823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons.
    Wu GY; Cline HT
    J Comp Neurol; 2003 May; 459(4):392-406. PubMed ID: 12687706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurogenesis in the olfactory bulb of the frog Xenopus laevis shows unique patterns during embryonic development and metamorphosis.
    Fritz A; Gorlick DL; Burd GD
    Int J Dev Neurosci; 1996 Nov; 14(7-8):931-43. PubMed ID: 9010736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Evaluation of Olfactory Pathways in Living Xenopus Tadpoles.
    Terni B; Pacciolla P; Perelló M; Llobet A
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30596385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic spine dynamics.
    Bhatt DH; Zhang S; Gan WB
    Annu Rev Physiol; 2009; 71():261-82. PubMed ID: 19575680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response learning stimulates dendritic spine growth on dorsal striatal medium spiny neurons.
    Briones BA; Tang VD; Haye AE; Gould E
    Neurobiol Learn Mem; 2018 Nov; 155():50-59. PubMed ID: 29908973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perisomatic-targeting granule cells in the mouse olfactory bulb.
    Naritsuka H; Sakai K; Hashikawa T; Mori K; Yamaguchi M
    J Comp Neurol; 2009 Aug; 515(4):409-26. PubMed ID: 19459218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory interneurons in the olfactory bulb: from development to function.
    Lledo PM; Saghatelyan A; Lemasson M
    Neuroscientist; 2004 Aug; 10(4):292-303. PubMed ID: 15271257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Golgi study of the plasticity of dendritic spines in the hypothalamic ventromedial nucleus during the estrous cycle of female rats.
    González-Burgos I; Velázquez-Zamora DA; González-Tapia D; Cervantes M
    Neuroscience; 2015 Jul; 298():74-80. PubMed ID: 25892700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogs Rana pipiens and Xenopus laevis.
    Boyd JD; Delaney KR
    J Comp Neurol; 2002 Dec; 454(1):42-57. PubMed ID: 12410617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.