These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments. Qian C; Yu Y; Tang K; Jin Y; Yao X; Zhou ZH Evol Comput; 2018; 26(2):237-267. PubMed ID: 27982697 [TBL] [Abstract][Full Text] [Related]
3. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding. Guturu P; Dantu R IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):645-66. PubMed ID: 18558530 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary and Estimation of Distribution Algorithms for Unconstrained, Constrained, and Multiobjective Noisy Combinatorial Optimisation Problems. Aishwaryaprajna ; Rowe JE Evol Comput; 2023 Sep; 31(3):259-285. PubMed ID: 36854020 [TBL] [Abstract][Full Text] [Related]
6. Robustness of Ant Colony Optimization to Noise. Friedrich T; Kötzing T; Krejca MS; Sutton AM Evol Comput; 2016; 24(2):237-54. PubMed ID: 26928850 [TBL] [Abstract][Full Text] [Related]
7. Exploiting Linkage Information and Problem-Specific Knowledge in Evolutionary Distribution Network Expansion Planning. Luong NH; Poutré H; Bosman PAN Evol Comput; 2018; 26(3):471-505. PubMed ID: 28388221 [TBL] [Abstract][Full Text] [Related]
8. A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. Chen T; He J; Sun G; Chen G; Yao X IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1092-106. PubMed ID: 19336324 [TBL] [Abstract][Full Text] [Related]
9. Multi-objective optimization with estimation of distribution algorithm in a noisy environment. Shim VA; Tan KC; Chia JY; Al Mamun A Evol Comput; 2013; 21(1):149-77. PubMed ID: 22264074 [TBL] [Abstract][Full Text] [Related]
10. On the Performance of Different Genetic Programming Approaches for the SORTING Problem. Wagner M; Neumann F; Urli T Evol Comput; 2015; 23(4):583-609. PubMed ID: 25870929 [TBL] [Abstract][Full Text] [Related]
11. Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems. Lai X; Zhou Y; Xia X; Zhang Q Evol Comput; 2017; 25(4):707-723. PubMed ID: 27959580 [TBL] [Abstract][Full Text] [Related]
12. On Proportions of Fit Individuals in Population of Mutation-Based Evolutionary Algorithm with Tournament Selection. Eremeev AV Evol Comput; 2018; 26(2):269-297. PubMed ID: 28489414 [TBL] [Abstract][Full Text] [Related]
13. The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms. Hu J; Goodman E; Seo K; Fan Z; Rosenberg R Evol Comput; 2005; 13(2):241-77. PubMed ID: 15969902 [TBL] [Abstract][Full Text] [Related]
14. Regularity Model for Noisy Multiobjective Optimization. Wang H; Zhang Q; Jiao L; Yao X IEEE Trans Cybern; 2016 Sep; 46(9):1997-2009. PubMed ID: 26259211 [TBL] [Abstract][Full Text] [Related]
15. Dual-Environmental Particle Swarm Optimizer in Noisy and Noise-Free Environments. Zhang J; Zhu X; Wang Y; Zhou M IEEE Trans Cybern; 2019 Jun; 49(6):2011-2021. PubMed ID: 29994037 [TBL] [Abstract][Full Text] [Related]
16. Efficient and scalable Pareto optimization by evolutionary local selection algorithms. Menczer F; Degeratu M; Street WN Evol Comput; 2000; 8(2):223-47. PubMed ID: 10843522 [TBL] [Abstract][Full Text] [Related]
17. Application of non-animal-inspired evolutionary algorithms to reservoir operation: an overview. Jahandideh-Tehrani M; Bozorg-Haddad O; Loáiciga HA Environ Monit Assess; 2019 Jun; 191(7):439. PubMed ID: 31203466 [TBL] [Abstract][Full Text] [Related]
18. Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering. Yeh WC; Lai CM PLoS One; 2015; 10(9):e0137246. PubMed ID: 26348483 [TBL] [Abstract][Full Text] [Related]
19. Score-based resampling method for evolutionary algorithms. Park J; Jeon M; Pedrycz W IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1347-55. PubMed ID: 18784016 [TBL] [Abstract][Full Text] [Related]
20. ETEA: a Euclidean minimum spanning tree-based evolutionary algorithm for multi-objective optimization. Li M; Yang S; Zheng J; Liu X Evol Comput; 2014; 22(2):189-230. PubMed ID: 23746293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]