BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26485928)

  • 41. Method for semi-automated microscopy of filtration-enriched circulating tumor cells.
    Pailler E; Oulhen M; Billiot F; Galland A; Auger N; Faugeroux V; Laplace-Builhé C; Besse B; Loriot Y; Ngo-Camus M; Hemanda M; Lindsay CR; Soria JC; Vielh P; Farace F
    BMC Cancer; 2016 Jul; 16():477. PubMed ID: 27417942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New methods for ALK status diagnosis in non-small-cell lung cancer: an improved ALK immunohistochemical assay and a new, Brightfield, dual ALK IHC-in situ hybridization assay.
    Nitta H; Tsuta K; Yoshida A; Ho SN; Kelly BD; Murata LB; Kosmeder J; White K; Ehser S; Towne P; Schemp C; McElhinny A; Ranger-Moore J; Bieniarz C; Singh S; Tsuda H; Grogan TM
    J Thorac Oncol; 2013 Aug; 8(8):1019-31. PubMed ID: 23817194
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantum dot-based, quantitative, and multiplexed assay for tissue staining.
    Xu H; Xu J; Wang X; Wu D; Chen ZG; Wang AY
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2901-7. PubMed ID: 23551017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization.
    Ali SM; Hensing T; Schrock AB; Allen J; Sanford E; Gowen K; Kulkarni A; He J; Suh JH; Lipson D; Elvin JA; Yelensky R; Chalmers Z; Chmielecki J; Peled N; Klempner SJ; Firozvi K; Frampton GM; Molina JR; Menon S; Brahmer JR; MacMahon H; Nowak J; Ou SH; Zauderer M; Ladanyi M; Zakowski M; Fischbach N; Ross JS; Stephens PJ; Miller VA; Wakelee H; Ganesan S; Salgia R
    Oncologist; 2016 Jun; 21(6):762-70. PubMed ID: 27245569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Validation of ALK/ROS1 Dual Break Apart FISH Probe probe in non-small-cell lung cancer.
    Lim SM; Chang H; Cha YJ; Liang S; Tai YC; Li G; Pestova E; Policht F; Perez T; Soo RA; Park WY; Kim HR; Shim HS; Cho BC
    Lung Cancer; 2017 Sep; 111():79-83. PubMed ID: 28838404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing Specific Fluorescence In Situ Hybridization with Quantum Dots for Single-Molecule RNA Imaging in Formalin-Fixed Paraffin-Embedded Tumor Tissues.
    Zhao Z; Jiang M; He C; Yin W; Feng Y; Wang P; Ying L; Fu T; Su D; Peng R; Tan W
    ACS Nano; 2024 Apr; 18(14):9958-9968. PubMed ID: 38547522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparative analysis of immunohistochemistry and fluorescent
    Wagle PB; Jambhekar NA; Kumar R; Prabhash K; Pramesh CS; Desai SB; Noronha V; Karimundackal G; Shah A; Joshi A; Laskar SG; Jiwnani S; Pai T; Agarwal JP
    Indian J Cancer; 2017; 54(1):148-154. PubMed ID: 29199679
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution whole-mount in situ hybridization using Quantum Dot nanocrystals.
    Ioannou A; Eleftheriou I; Lubatti A; Charalambous A; Skourides PA
    J Biomed Biotechnol; 2012; 2012():627602. PubMed ID: 22287835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Establishment of a Ca(II) ion-quantum dots fluorescence signal amplification sensor for high-sensitivity biomarker detection.
    Lv Y; Wang P; Li J; Li N; Xu D; Wu R; Shen H; Li LS
    Anal Chim Acta; 2023 Jan; 1237():340534. PubMed ID: 36442931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated processing of fluorescence in-situ hybridization slides for HER2 testing in breast and gastro-esophageal carcinomas.
    Tafe LJ; Allen SF; Steinmetz HB; Dokus BA; Cook LJ; Marotti JD; Tsongalis GJ
    Exp Mol Pathol; 2014 Aug; 97(1):116-9. PubMed ID: 24927872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence signal amplification assay for the detection of B. melitensis 16M, based on peptide-mediated magnetic separation technology and a AuNP-mediated bio-barcode assembled by quantum dot technology.
    Li X; Zhao C; Liu Y; Li Y; Lian F; Wang D; Zhang Y; Wang J; Song X; Li J; Yang Y; Xu K
    Analyst; 2019 Apr; 144(8):2704-2715. PubMed ID: 30864589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel method for rapid fluorescence in-situ hybridization of ALK rearrangement using non-contact alternating current electric field mixing.
    Fujishima S; Imai K; Nakamura R; Nanjo H; Saito Y; Saito H; Terata K; Sato Y; Motoyama S; Akagami Y; Minamiya Y
    Sci Rep; 2017 Nov; 7(1):15116. PubMed ID: 29118432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms.
    Stålhammar G; Farrajota P; Olsson A; Silva C; Hartman J; Elmberger G
    Ann Diagn Pathol; 2015 Aug; 19(4):203-10. PubMed ID: 25921313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC): results of a multi-centre ALK-testing.
    V Laffert M; Warth A; Penzel R; Schirmacher P; Jonigk D; Kreipe H; Schildhaus HU; Merkelbach-Bruse S; Büttner R; Reu S; Kerler R; Jung A; Kirchner T; Wölfel C; Petersen I; Rodriguez R; Jochum W; Bartsch H; Fisseler-Eckhoff A; Berg E; Lenze D; Dietel M; Hummel M
    Lung Cancer; 2013 Aug; 81(2):200-6. PubMed ID: 23669200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry.
    Schelling LA; Williamson SR; Zhang S; Yao JL; Wang M; Huang J; Montironi R; Lopez-Beltran A; Emerson RE; Idrees MT; Osunkoya AO; Man YG; Maclennan GT; Baldridge LA; Compérat E; Cheng L
    Hum Pathol; 2013 Oct; 44(10):2227-33. PubMed ID: 23850495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in non-small cell lung cancer: correlation with fluorescence in situ hybridization.
    Paik JH; Choe G; Kim H; Choe JY; Lee HJ; Lee CT; Lee JS; Jheon S; Chung JH
    J Thorac Oncol; 2011 Mar; 6(3):466-72. PubMed ID: 21258247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A sensitive and high throughput TaqMan-based reverse transcription quantitative polymerase chain reaction assay efficiently discriminates ALK rearrangement from overexpression for lung cancer FFPE specimens.
    Lung J; Lin YC; Hung MS; Jiang YY; Lee KD; Lin PY; Tsai YH
    Lung Cancer; 2016 Apr; 94():114-20. PubMed ID: 26973216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A technical note on quantum dots for multi-color fluorescence in situ hybridization.
    Müller S; Cremer M; Neusser M; Grasser F; Cremer T
    Cytogenet Genome Res; 2009; 124(3-4):351-9. PubMed ID: 19556786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The detection of p53 gene via fluorescence quenching of quantum dot in microfluidic chip.
    Yoo JH; Yoo IS; Yoon WJ; Kim JS
    J Nanosci Nanotechnol; 2012 May; 12(5):4109-14. PubMed ID: 22852354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH).
    Nitta H; Hauss-Wegrzyniak B; Lehrkamp M; Murillo AE; Gaire F; Farrell M; Walk E; Penault-Llorca F; Kurosumi M; Dietel M; Wang L; Loftus M; Pettay J; Tubbs RR; Grogan TM
    Diagn Pathol; 2008 Oct; 3():41. PubMed ID: 18945356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.