BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26485964)

  • 1. Accounting for groundwater in stream fish thermal habitat responses to climate change.
    Snyder CD; Hitt NP; Young JA
    Ecol Appl; 2015 Jul; 25(5):1397-419. PubMed ID: 26485964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals.
    Briggs MA; Johnson ZC; Snyder CD; Hitt NP; Kurylyk BL; Lautz L; Irvine DJ; Hurley ST; Lane JW
    Sci Total Environ; 2018 Sep; 636():1117-1127. PubMed ID: 29913574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can brook trout survive climate change in large rivers? If it rains.
    Merriam ER; Fernandez R; Petty JT; Zegre N
    Sci Total Environ; 2017 Dec; 607-608():1225-1236. PubMed ID: 28732401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal weather patterns drive population vital rates and persistence in a stream fish.
    Kanno Y; Letcher BH; Hitt NP; Boughton DA; Wofford JE; Zipkin EF
    Glob Chang Biol; 2015 May; 21(5):1856-70. PubMed ID: 25523515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual behaviour and resource use of thermally stressed brook trout Salvelinus fontinalis portend the conservation potential of thermal refugia.
    White SL; Kline BC; Hitt NP; Wagner T
    J Fish Biol; 2019 Oct; 95(4):1061-1071. PubMed ID: 31309548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.
    Ruesch AS; Torgersen CE; Lawler JJ; Olden JD; Peterson EE; Volk CJ; Lawrence DJ
    Conserv Biol; 2012 Oct; 26(5):873-82. PubMed ID: 22827880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin.
    Selbig WR
    Sci Total Environ; 2015 Jul; 521-522():11-8. PubMed ID: 25828407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microgeographic variation in demography and thermal regimes stabilize regional abundance of a widespread freshwater fish.
    Gallagher BK; Fraser DJ
    Ecol Appl; 2024 Mar; 34(2):e2936. PubMed ID: 38071739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal controls of Yellowstone cutthroat trout and invasive fishes under climate change.
    Al-Chokhachy R; Alder J; Hostetler S; Gresswell R; Shepard B
    Glob Chang Biol; 2013 Oct; 19(10):3069-81. PubMed ID: 23687062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.
    DeWeber JT; Wagner T
    Glob Chang Biol; 2018 Jun; 24(6):2735-2748. PubMed ID: 29468779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network.
    Isaak DJ; Luce CH; Rieman BE; Nagel DE; Peterson EE; Horan DL; Parkes S; Chandler GL
    Ecol Appl; 2010 Jul; 20(5):1350-71. PubMed ID: 20666254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air temperatures over-predict changes to stream fish assemblages with climate warming compared with water temperatures.
    Kirk MA; Rahel FJ
    Ecol Appl; 2022 Jan; 32(1):e02465. PubMed ID: 34614252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout.
    Bassar RD; Letcher BH; Nislow KH; Whiteley AR
    Glob Chang Biol; 2016 Feb; 22(2):577-93. PubMed ID: 26490737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.
    Vigliano PH; Rechencq MM; Fernández MV; Lippolt GE; Macchi PJ
    Sci Total Environ; 2018 Sep; 636():688-698. PubMed ID: 29727836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifting thermal regimes influence competitive feeding and aggression dynamics of brook trout (
    Colby BR; Niles JM; Persons MH; Wilson MJ
    Ecol Evol; 2022 Jul; 12(7):e9056. PubMed ID: 35813903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams.
    McDonnell TC; Sloat MR; Sullivan TJ; Dolloff CA; Hessburg PF; Povak NA; Jackson WA; Sams C
    PLoS One; 2015; 10(8):e0134757. PubMed ID: 26247361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brook Trout (Salvelinus fontinalis) and Brown Trout (Salmo trutta) summer thermal habitat use in streams with sympatric populations.
    Valerie O; Daniels MD
    J Therm Biol; 2021 May; 98():102931. PubMed ID: 34016353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserving stream fishes with changing climate: Assessing fish responses to changes in habitat over a large region.
    Tsang Y; Infante DM; Wang L; Krueger D; Wieferich D
    Sci Total Environ; 2021 Feb; 755(Pt 2):142503. PubMed ID: 33045606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.
    Penaluna BE; Dunham JB; Railsback SF; Arismendi I; Johnson SL; Bilby RE; Safeeq M; Skaugset AE
    PLoS One; 2015; 10(8):e0135334. PubMed ID: 26295478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.