BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26486138)

  • 1. Organocatalytic Site-Selective Acylation of Carbohydrates and Polyol Compounds.
    Ueda Y; Kawabata T
    Top Curr Chem; 2016; 372():203-32. PubMed ID: 26486138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Final-stage Site-selective Acylation for the Total Synthesis of Natural Glycosides].
    Ueda Y
    Yakugaku Zasshi; 2016; 136(12):1631-1639. PubMed ID: 27904097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Strategies for Enantio- and Site-Selective Molecular Transformations.
    Kawabata T
    Chem Pharm Bull (Tokyo); 2023; 71(7):466-484. PubMed ID: 37394594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Selective Molecular Transformation: Acylation of Hydroxy Groups and C-H Amination.
    Ueda Y
    Chem Pharm Bull (Tokyo); 2021; 69(10):931-944. PubMed ID: 34602573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Final-stage site-selective acylation for the total syntheses of multifidosides A-C.
    Ueda Y; Furuta T; Kawabata T
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):11966-70. PubMed ID: 26384855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organocatalytic Site-Selective Acylation of Avermectin B2a, a Unique Endectocidal Drug.
    Yamada T; Suzuki K; Hirose T; Furuta T; Ueda Y; Kawabata T; Ōmura S; Sunazuka T
    Chem Pharm Bull (Tokyo); 2016 Jul; 64(7):856-64. PubMed ID: 27075247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation-n Interaction.
    Xiao G; Cintron-Rosado GA; Glazier DA; Xi BM; Liu C; Liu P; Tang W
    J Am Chem Soc; 2017 Mar; 139(12):4346-4349. PubMed ID: 28297601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity switch in the catalytic functionalization of nonprotected carbohydrates: selective synthesis in the presence of anomeric and structurally similar carbohydrates under mild conditions.
    Muramatsu W; Takemoto Y
    J Org Chem; 2013 Mar; 78(6):2336-45. PubMed ID: 23360236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-controlled, transition-metal catalyzed site-selective modification of glycosides.
    Shang W; He B; Niu D
    Carbohydr Res; 2019 Feb; 474():16-33. PubMed ID: 30703629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition and site-selective transformation of monosaccharides by using copper(II) catalysis.
    Chen IH; Kou KG; Le DN; Rathbun CM; Dong VM
    Chemistry; 2014 Apr; 20(17):5013-8. PubMed ID: 24623522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides.
    Kawabata T; Muramatsu W; Nishio T; Shibata T; Schedel H
    J Am Chem Soc; 2007 Oct; 129(42):12890-5. PubMed ID: 17902666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-Adamantyl Group Directed Site-Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides.
    Blaszczyk SA; Xiao G; Wen P; Hao H; Wu J; Wang B; Carattino F; Li Z; Glazier DA; McCarty BJ; Liu P; Tang W
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9542-9546. PubMed ID: 31066162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional group tolerance in organocatalytic regioselective acylation of carbohydrates.
    Ueda Y; Muramatsu W; Mishiro K; Furuta T; Kawabata T
    J Org Chem; 2009 Nov; 74(22):8802-5. PubMed ID: 19908913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis based on reversible covalent interactions of organoboron compounds.
    Taylor MS
    Acc Chem Res; 2015 Feb; 48(2):295-305. PubMed ID: 25493641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies.
    Lee D; Williamson CL; Chan L; Taylor MS
    J Am Chem Soc; 2012 May; 134(19):8260-7. PubMed ID: 22533533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Anomeric Hydroxyl Groups and a Controlled Reduction of the Glycosyl Ester Products.
    Wang HY; Simmons CJ; Zhang Y; Smits AM; Balzer PG; Wang S; Tang W
    Org Lett; 2017 Feb; 19(3):508-511. PubMed ID: 28080072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general, iterative, and modular approach toward carbohydrate libraries based on ruthenium-catalyzed oxidative cyclizations.
    Niggemann M; Jelonek A; Biber N; Wuchrer M; Plietker B
    J Org Chem; 2008 Sep; 73(18):7028-36. PubMed ID: 18707173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategy for enantio- and diastereoselective syntheses of all possible stereoisomers of 1,3-polyol arrays based on a highly catalyst-controlled epoxidation of alpha,beta-unsaturated morpholinyl amides: application to natural product synthesis.
    Tosaki SY; Horiuchi Y; Nemoto T; Ohshima T; Shibasaki M
    Chemistry; 2004 Mar; 10(6):1527-44. PubMed ID: 15034897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organocatalytic Site-Selective Acylation of 10-Deacetylbaccatin III.
    Yanagi M; Ninomiya R; Ueda Y; Furuta T; Yamada T; Sunazuka T; Kawabata T
    Chem Pharm Bull (Tokyo); 2016 Jul; 64(7):907-12. PubMed ID: 26903156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic tuning of site-selectivity.
    Wilcock BC; Uno BE; Bromann GL; Clark MJ; Anderson TM; Burke MD
    Nat Chem; 2012 Dec; 4(12):996-1003. PubMed ID: 23174979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.