These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 26487485)
1. Energy Metabolism in Mesenchymal Stem Cells During Osteogenic Differentiation. Shum LC; White NS; Mills BN; Bentley KL; Eliseev RA Stem Cells Dev; 2016 Jan; 25(2):114-22. PubMed ID: 26487485 [TBL] [Abstract][Full Text] [Related]
2. Energy metabolic capacities of human adipose-derived mesenchymal stromal cells in vitro and their adaptations in osteogenic and adipogenic differentiation. Meyer J; Salamon A; Mispagel S; Kamp G; Peters K Exp Cell Res; 2018 Sep; 370(2):632-642. PubMed ID: 30036541 [TBL] [Abstract][Full Text] [Related]
3. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. Boland GM; Perkins G; Hall DJ; Tuan RS J Cell Biochem; 2004 Dec; 93(6):1210-30. PubMed ID: 15486964 [TBL] [Abstract][Full Text] [Related]
4. Energy Metabolism During Osteogenic Differentiation: The Role of Akt. Smith CO; Eliseev RA Stem Cells Dev; 2021 Feb; 30(3):149-162. PubMed ID: 33307974 [TBL] [Abstract][Full Text] [Related]
5. HIF-1α is upregulated in human mesenchymal stem cells. Palomäki S; Pietilä M; Laitinen S; Pesälä J; Sormunen R; Lehenkari P; Koivunen P Stem Cells; 2013 Sep; 31(9):1902-9. PubMed ID: 23744828 [TBL] [Abstract][Full Text] [Related]
6. Musculoskeletal Progenitor/Stromal Cell-Derived Mitochondria Modulate Cell Differentiation and Therapeutical Function. Jorgensen C; Khoury M Front Immunol; 2021; 12():606781. PubMed ID: 33763061 [TBL] [Abstract][Full Text] [Related]
7. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells. Zhou N; Hu N; Liao JY; Lin LB; Zhao C; Si WK; Yang Z; Yi SX; Fan TX; Bao W; Liang X; Wei X; Chen H; Chen C; Chen Q; Lin X; Huang W Cell Physiol Biochem; 2015; 36(1):44-60. PubMed ID: 25924688 [TBL] [Abstract][Full Text] [Related]
8. The metabolism of human mesenchymal stem cells during proliferation and differentiation. Pattappa G; Heywood HK; de Bruijn JD; Lee DA J Cell Physiol; 2011 Oct; 226(10):2562-70. PubMed ID: 21792913 [TBL] [Abstract][Full Text] [Related]
9. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state. Park IH; Kim KH; Choi HK; Shim JS; Whang SY; Hahn SJ; Kwon OJ; Oh IH Exp Mol Med; 2013 Sep; 45(9):e44. PubMed ID: 24071737 [TBL] [Abstract][Full Text] [Related]
11. Effect of negative pressure on human bone marrow mesenchymal stem cells in vitro. Zhang YG; Yang Z; Zhang H; Wang C; Liu M; Guo X; Xu P Connect Tissue Res; 2010; 51(1):14-21. PubMed ID: 20067412 [TBL] [Abstract][Full Text] [Related]
12. Hypoxia induces osteogenesis-related activities and expression of core binding factor α1 in mesenchymal stem cells. Huang J; Deng F; Wang L; Xiang XR; Zhou WW; Hu N; Xu L Tohoku J Exp Med; 2011 May; 224(1):7-12. PubMed ID: 21498965 [TBL] [Abstract][Full Text] [Related]
13. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. Shares BH; Busch M; White N; Shum L; Eliseev RA J Biol Chem; 2018 Oct; 293(41):16019-16027. PubMed ID: 30150300 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia-Induced Mesenchymal Stromal Cells Exhibit an Enhanced Therapeutic Effect on Radiation-Induced Lung Injury in Mice due to an Increased Proliferation Potential and Enhanced Antioxidant Ability. Li B; Li C; Zhu M; Zhang Y; Du J; Xu Y; Liu B; Gao F; Liu H; Cai J; Yang Y Cell Physiol Biochem; 2017; 44(4):1295-1310. PubMed ID: 29183009 [TBL] [Abstract][Full Text] [Related]
15. Age-Related Insulin-Like Growth Factor Binding Protein-4 Overexpression Inhibits Osteogenic Differentiation of Rat Mesenchymal Stem Cells. Wu J; Wang C; Miao X; Wu Y; Yuan J; Ding M; Li J; Shi Z Cell Physiol Biochem; 2017; 42(2):640-650. PubMed ID: 28595186 [TBL] [Abstract][Full Text] [Related]
16. Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Xie Z; Tang S; Ye G; Wang P; Li J; Liu W; Li M; Wang S; Wu X; Cen S; Zheng G; Ma M; Wu Y; Shen H Stem Cell Res Ther; 2018 Jan; 9(1):13. PubMed ID: 29357923 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial function and energy metabolism in umbilical cord blood- and bone marrow-derived mesenchymal stem cells. Pietilä M; Palomäki S; Lehtonen S; Ritamo I; Valmu L; Nystedt J; Laitinen S; Leskelä HV; Sormunen R; Pesälä J; Nordström K; Vepsäläinen A; Lehenkari P Stem Cells Dev; 2012 Mar; 21(4):575-88. PubMed ID: 21615273 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Hsu SH; Chen CT; Wei YH Stem Cells; 2013 Dec; 31(12):2779-88. PubMed ID: 23733376 [TBL] [Abstract][Full Text] [Related]
19. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning. Meng SS; Xu XP; Chang W; Lu ZH; Huang LL; Xu JY; Liu L; Qiu HB; Yang Y; Guo FM Stem Cell Res Ther; 2018 Oct; 9(1):280. PubMed ID: 30359325 [TBL] [Abstract][Full Text] [Related]