These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 26487681)

  • 1. From residue coevolution to protein conformational ensembles and functional dynamics.
    Sutto L; Marsili S; Valencia A; Gervasio FL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13567-72. PubMed ID: 26487681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained protein model with residue orientation energies derived from atomic force fields.
    Betancourt MR
    J Phys Chem B; 2009 Nov; 113(44):14824-30. PubMed ID: 19817469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting protein dynamics from structural ensembles.
    Copperman J; Guenza MG
    J Chem Phys; 2015 Dec; 143(24):243131. PubMed ID: 26723616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained models of the proteins backbone conformational dynamics.
    Ha-Duong T
    Adv Exp Med Biol; 2014; 805():157-69. PubMed ID: 24446361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations.
    Cunha KC; Rusu VH; Viana IF; Marques ET; Dhalia R; Lins RD
    Biopolymers; 2015 Jun; 103(6):351-61. PubMed ID: 25677872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balancing bond, nonbond, and gō-like terms in coarse grain simulations of conformational dynamics.
    Hills RD
    Methods Mol Biol; 2014; 1084():123-40. PubMed ID: 24061919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisequence algorithm for coarse-grained biomolecular simulations: Exploring the sequence-structure relationship of proteins.
    Aina A; Wallin S
    J Chem Phys; 2017 Sep; 147(9):095102. PubMed ID: 28886656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structure prediction: making AWSEM AWSEM-ER by adding evolutionary restraints.
    Sirovetz BJ; Schafer NP; Wolynes PG
    Proteins; 2017 Nov; 85(11):2127-2142. PubMed ID: 28799172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of atomistic Gō models in predicting native-like folding intermediates.
    Estácio SG; Fernandes CS; Krobath H; Faísca PF; Shakhnovich EI
    J Chem Phys; 2012 Aug; 137(8):085102. PubMed ID: 22938266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coevolutionary Signals and Structure-Based Models for the Prediction of Protein Native Conformations.
    Dos Santos RN; Jiang X; Martínez L; Morcos F
    Methods Mol Biol; 2019; 1851():83-103. PubMed ID: 30298393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
    Saleh S; Olson B; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient traversal of beta-sheet protein folding pathways using ensemble models.
    Shenker S; O'Donnell CW; Devadas S; Berger B; Waldispühl J
    J Comput Biol; 2011 Nov; 18(11):1635-47. PubMed ID: 21958108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of the src-SH3 protein domain transition state ensemble using multiscale molecular dynamics simulations.
    Ding F; Guo W; Dokholyan NV; Shakhnovich EI; Shea JE
    J Mol Biol; 2005 Jul; 350(5):1035-50. PubMed ID: 15982666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?
    Taly JF; Marin A; Gibrat JF
    BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of ensembles of structures representing the unfolded state of an SH3 domain.
    Choy WY; Forman-Kay JD
    J Mol Biol; 2001 May; 308(5):1011-32. PubMed ID: 11352588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale investigation of chemical interference in proteins.
    Samiotakis A; Homouz D; Cheung MS
    J Chem Phys; 2010 May; 132(17):175101. PubMed ID: 20459186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the shape of the distribution of protein conformations at equilibrium?
    Cruzeiro L; Degrève L
    J Biomol Struct Dyn; 2015; 33(7):1539-46. PubMed ID: 25229986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.