BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26487755)

  • 1. 9p21.3 Coronary Artery Disease Risk Variants Disrupt TEAD Transcription Factor-Dependent Transforming Growth Factor β Regulation of p16 Expression in Human Aortic Smooth Muscle Cells.
    Almontashiri NA; Antoine D; Zhou X; Vilmundarson RO; Zhang SX; Hao KN; Chen HH; Stewart AF
    Circulation; 2015 Nov; 132(21):1969-78. PubMed ID: 26487755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferon-γ activates expression of p15 and p16 regardless of 9p21.3 coronary artery disease risk genotype.
    Almontashiri NA; Fan M; Cheng BL; Chen HH; Roberts R; Stewart AF
    J Am Coll Cardiol; 2013 Jan; 61(2):143-7. PubMed ID: 23199516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect Size Does Matter: The Long Road to Mechanistic Insight From Genome-Wide Association.
    MacRae CA; Pollak MR
    Circulation; 2015 Nov; 132(21):1943-5. PubMed ID: 26487758
    [No Abstract]   [Full Text] [Related]  

  • 4. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells.
    Motterle A; Pu X; Wood H; Xiao Q; Gor S; Ng FL; Chan K; Cross F; Shohreh B; Poston RN; Tucker AT; Caulfield MJ; Ye S
    Hum Mol Genet; 2012 Sep; 21(18):4021-9. PubMed ID: 22706276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in human atherosclerotic plaque.
    Holdt LM; Sass K; Gäbel G; Bergert H; Thiery J; Teupser D
    Atherosclerosis; 2011 Feb; 214(2):264-70. PubMed ID: 20637465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus.
    Jarinova O; Stewart AF; Roberts R; Wells G; Lau P; Naing T; Buerki C; McLean BW; Cook RC; Parker JS; McPherson R
    Arterioscler Thromb Vasc Biol; 2009 Oct; 29(10):1671-7. PubMed ID: 19592466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDKN2B Regulates TGFβ Signaling and Smooth Muscle Cell Investment of Hypoxic Neovessels.
    Nanda V; Downing KP; Ye J; Xiao S; Kojima Y; Spin JM; DiRenzo D; Nead KT; Connolly AJ; Dandona S; Perisic L; Hedin U; Maegdefessel L; Dalman J; Guo L; Zhao X; Kolodgie FD; Virmani R; Davis HR; Leeper NJ
    Circ Res; 2016 Jan; 118(2):230-40. PubMed ID: 26596284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Characterization of the
    Kessler T; Wobst J; Wolf B; Eckhold J; Vilne B; Hollstein R; von Ameln S; Dang TA; Sager HB; Moritz Rumpf P; Aherrahrou R; Kastrati A; Björkegren JLM; Erdmann J; Lusis AJ; Civelek M; Kaiser FJ; Schunkert H
    Circulation; 2017 Aug; 136(5):476-489. PubMed ID: 28487391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 9p21 locus does not affect risk of coronary artery disease through induction of type 1 interferons.
    Erridge C; Gracey J; Braund PS; Samani NJ
    J Am Coll Cardiol; 2013 Oct; 62(15):1376-81. PubMed ID: 23933542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B.
    Congrains A; Kamide K; Oguro R; Yasuda O; Miyata K; Yamamoto E; Kawai T; Kusunoki H; Yamamoto H; Takeya Y; Yamamoto K; Onishi M; Sugimoto K; Katsuya T; Awata N; Ikebe K; Gondo Y; Oike Y; Ohishi M; Rakugi H
    Atherosclerosis; 2012 Feb; 220(2):449-55. PubMed ID: 22178423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response.
    Harismendy O; Notani D; Song X; Rahim NG; Tanasa B; Heintzman N; Ren B; Fu XD; Topol EJ; Rosenfeld MG; Frazer KA
    Nature; 2011 Feb; 470(7333):264-8. PubMed ID: 21307941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease-associated polymorphisms in 9p21 are not associated with extreme longevity.
    Congrains A; Kamide K; Hirose N; Arai Y; Oguro R; Nakama C; Imaizumi Y; Kawai T; Kusunoki H; Yamamoto H; Onishi-Takeya M; Takeya Y; Yamamoto K; Sugimoto K; Akasaka H; Saitoh S; Miura T; Awata N; Kato N; Katsuya T; Ikebe K; Gondo Y; Rakugi H
    Geriatr Gerontol Int; 2015 Jun; 15(6):797-803. PubMed ID: 25257646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas.
    Boström J; Meyer-Puttlitz B; Wolter M; Blaschke B; Weber RG; Lichter P; Ichimura K; Collins VP; Reifenberger G
    Am J Pathol; 2001 Aug; 159(2):661-9. PubMed ID: 11485924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homozygous deletions at chromosome 9p21 and mutation analysis of p16 and p15 in microdissected primary non-small cell lung cancers.
    Packenham JP; Taylor JA; White CM; Anna CH; Barrett JC; Devereux TR
    Clin Cancer Res; 1995 Jul; 1(7):687-90. PubMed ID: 9816033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice.
    Visel A; Zhu Y; May D; Afzal V; Gong E; Attanasio C; Blow MJ; Cohen JC; Rubin EM; Pennacchio LA
    Nature; 2010 Mar; 464(7287):409-12. PubMed ID: 20173736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of P16(Ink4)/CDKN2 and P15(INK4B)/MTS2 genes in primary human testicular germ cell tumors.
    Heidenreich A; Gaddipati JP; Moul JW; Srivastava S
    J Urol; 1998 May; 159(5):1725-30. PubMed ID: 9554401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma.
    Worsham MJ; Chen KM; Tiwari N; Pals G; Schouten JP; Sethi S; Benninger MS
    Arch Otolaryngol Head Neck Surg; 2006 Apr; 132(4):409-15. PubMed ID: 16618910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of atypical spitz tumors with heterozygous versus homozygous 9p21 deletions for clinical outcomes, histomorphology, BRAF mutation, and p16 expression.
    Yazdan P; Cooper C; Sholl LM; Busam K; Rademaker A; Weitner BB; Obregon R; Guitart J; Gerami P
    Am J Surg Pathol; 2014 May; 38(5):638-45. PubMed ID: 24451276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors.
    Lubomierski N; Kersting M; Bert T; Muench K; Wulbrand U; Schuermann M; Bartsch D; Simon B
    Cancer Res; 2001 Aug; 61(15):5905-10. PubMed ID: 11479232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resequencing and clinical associations of the 9p21.3 region: a comprehensive investigation in the Framingham heart study.
    Johnson AD; Hwang SJ; Voorman A; Morrison A; Peloso GM; Hsu YH; Thanassoulis G; Newton-Cheh C; Rogers IS; Hoffmann U; Freedman JE; Fox CS; Psaty BM; Boerwinkle E; Cupples LA; O'Donnell CJ
    Circulation; 2013 Feb; 127(7):799-810. PubMed ID: 23315372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.