These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 26488452)
1. Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. Shahriari D; Koffler J; Lynam DA; Tuszynski MH; Sakamoto JS J Biomed Mater Res A; 2016 Mar; 104(3):611-619. PubMed ID: 26488452 [TBL] [Abstract][Full Text] [Related]
2. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Günther MI; Weidner N; Müller R; Blesch A Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141 [TBL] [Abstract][Full Text] [Related]
3. Novel control of gel fraction and enhancement of bonding strength for constructing 3D architecture of tissue engineering scaffold with alginate tubular fiber. Li Y; Liu Y; Li S; Liang G; Jiang C; Hu Q J Biosci Bioeng; 2016 Jan; 121(1):111-116. PubMed ID: 26073314 [TBL] [Abstract][Full Text] [Related]
4. Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink-resistant conduit. Shahriari D; Shibayama M; Lynam DA; Wolf KJ; Kubota G; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS J Biomed Mater Res A; 2017 Dec; 105(12):3392-3399. PubMed ID: 28804998 [TBL] [Abstract][Full Text] [Related]
5. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026 [TBL] [Abstract][Full Text] [Related]
6. [Experimental study on bone marrow mesenchymal stem cells seeded in chitosan-alginate scaffolds for repairing spinal cord injury]. Wang D; Wen Y; Lan X; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Feb; 24(2):190-6. PubMed ID: 20187451 [TBL] [Abstract][Full Text] [Related]
7. Cell specificity of magnetic cell seeding approach to hydrogel colonization. Singh R; Wieser A; Reakasame S; Detsch R; Dietel B; Alexiou C; Boccaccini AR; Cicha I J Biomed Mater Res A; 2017 Nov; 105(11):2948-2957. PubMed ID: 28639348 [TBL] [Abstract][Full Text] [Related]
8. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
9. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold. Mahara A; Kiick KL; Yamaoka T J Biomed Mater Res A; 2017 Jun; 105(6):1746-1755. PubMed ID: 28130867 [TBL] [Abstract][Full Text] [Related]
10. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury. Koffler J; Samara RF; Rosenzweig ES Methods Mol Biol; 2014; 1162():157-65. PubMed ID: 24838966 [TBL] [Abstract][Full Text] [Related]
11. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Prang P; Müller R; Eljaouhari A; Heckmann K; Kunz W; Weber T; Faber C; Vroemen M; Bogdahn U; Weidner N Biomaterials; 2006 Jul; 27(19):3560-9. PubMed ID: 16500703 [TBL] [Abstract][Full Text] [Related]
12. Multichannel silk protein/laminin grafts for spinal cord injury repair. Zhang Q; Yan S; You R; Kaplan DL; Liu Y; Qu J; Li X; Li M; Wang X J Biomed Mater Res A; 2016 Dec; 104(12):3045-3057. PubMed ID: 27474892 [TBL] [Abstract][Full Text] [Related]
13. In vivo study of alginate hydrogel conglutinating cells to polycaprolactone vascular scaffolds fabricated by electrospinning. Sun KH; Liu Z; Liu CJ; Yu T; Zhou M; Liu C; Ran F; Pan LJ; Zhang H J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2443-2454. PubMed ID: 27654960 [TBL] [Abstract][Full Text] [Related]
14. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. Çelik E; Bayram C; Akçapınar R; Türk M; Denkbaş EB Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():221-229. PubMed ID: 27207058 [TBL] [Abstract][Full Text] [Related]
15. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Zhou H; Xu HH Biomaterials; 2011 Oct; 32(30):7503-13. PubMed ID: 21757229 [TBL] [Abstract][Full Text] [Related]
16. Microstructural, mechanical, and histological evaluation of modified alginate-based scaffolds. de la Portilla F; Pereira S; Molero M; De Marco F; Perez-Puyana V; Guerrero A; Romero A J Biomed Mater Res A; 2016 Dec; 104(12):3107-3114. PubMed ID: 27506966 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Marchioli G; van Gurp L; van Krieken PP; Stamatialis D; Engelse M; van Blitterswijk CA; Karperien MB; de Koning E; Alblas J; Moroni L; van Apeldoorn AA Biofabrication; 2015 May; 7(2):025009. PubMed ID: 26019140 [TBL] [Abstract][Full Text] [Related]
18. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models. Tamosaityte S; Galli R; Uckermann O; Sitoci-Ficici KH; Later R; Beiermeister R; Doberenz F; Gelinsky M; Leipnitz E; Schackert G; Koch E; Sablinskas V; Steiner G; Kirsch M PLoS One; 2015; 10(11):e0142660. PubMed ID: 26559822 [TBL] [Abstract][Full Text] [Related]
19. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
20. Strategies for neurotrophin-3 and chondroitinase ABC release from freeze-cast chitosan-alginate nerve-guidance scaffolds. Francis NL; Hunger PM; Donius AE; Wegst UG; Wheatley MA J Tissue Eng Regen Med; 2017 Jan; 11(1):285-294. PubMed ID: 24889394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]