These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 26488452)
21. Production of endothelial cell-enclosing alginate-based hydrogel fibers with a cell adhesive surface through simultaneous cross-linking by horseradish peroxidase-catalyzed reaction in a hydrodynamic spinning process. Liu Y; Sakai S; Taya M J Biosci Bioeng; 2012 Sep; 114(3):353-9. PubMed ID: 22613056 [TBL] [Abstract][Full Text] [Related]
22. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing. Yang Q; Li J; Xu H; Long S; Li X J Biomater Sci Polym Ed; 2017 Apr; 28(5):459-469. PubMed ID: 28105891 [TBL] [Abstract][Full Text] [Related]
23. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558 [TBL] [Abstract][Full Text] [Related]
24. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815 [TBL] [Abstract][Full Text] [Related]
26. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells. Ivanovska J; Zehnder T; Lennert P; Sarker B; Boccaccini AR; Hartmann A; Schneider-Stock R; Detsch R Tissue Eng Part C Methods; 2016 Jul; 22(7):708-15. PubMed ID: 27269631 [TBL] [Abstract][Full Text] [Related]
27. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]
28. Optimization of keratin/alginate scaffold using RSM and its characterization for tissue engineering. Gupta P; Nayak KK Int J Biol Macromol; 2016 Apr; 85():141-9. PubMed ID: 26691383 [TBL] [Abstract][Full Text] [Related]
29. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Liu M; Dai L; Shi H; Xiong S; Zhou C Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the flow behavior of alginate/hydroxyapatite mixtures for tissue scaffold fabrication. Tian XY; Li MG; Cao N; Li JW; Chen XB Biofabrication; 2009 Dec; 1(4):045005. PubMed ID: 20811114 [TBL] [Abstract][Full Text] [Related]
31. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair. Grulova I; Slovinska L; Blaško J; Devaux S; Wisztorski M; Salzet M; Fournier I; Kryukov O; Cohen S; Cizkova D Sci Rep; 2015 Sep; 5():13702. PubMed ID: 26348665 [TBL] [Abstract][Full Text] [Related]
32. Hydroxyapatite-doped alginate beads as scaffolds for the osteoblastic differentiation of mesenchymal stem cells. Wang MO; Bracaglia L; Thompson JA; Fisher JP J Biomed Mater Res A; 2016 Sep; 104(9):2325-33. PubMed ID: 27129735 [TBL] [Abstract][Full Text] [Related]
33. Effects of purified alginate sponge on the regeneration of chondrocytes: in vitro and in vivo. Song JE; Kim AR; Lee CJ; Tripathy N; Yoon KH; Lee D; Khang G J Biomater Sci Polym Ed; 2015; 26(3):181-95. PubMed ID: 25495827 [TBL] [Abstract][Full Text] [Related]
34. Hierarchically Ordered Porous and High-Volume Polycaprolactone Microchannel Scaffolds Enhanced Axon Growth in Transected Spinal Cords. Shahriari D; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS Tissue Eng Part A; 2017 May; 23(9-10):415-425. PubMed ID: 28107810 [TBL] [Abstract][Full Text] [Related]
35. Enhanced neuroregenerative effects by scaffold for the treatment of a rat spinal cord injury with Wnt3a-secreting fibroblasts. Park JH; Min J; Baek SR; Kim SW; Kwon IK; Jeon SR Acta Neurochir (Wien); 2013 May; 155(5):809-16. PubMed ID: 23456240 [TBL] [Abstract][Full Text] [Related]
36. Letter to the Editor re "Characterization of alginate-brushite in-situ hydrogel composites". Bjørnøy SH; Bassett DC; Ucar S; Andreassen JP; Sikorski P Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):930-931. PubMed ID: 27770970 [No Abstract] [Full Text] [Related]
37. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness. Shi P; Laude A; Yeong WY J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198 [TBL] [Abstract][Full Text] [Related]
38. Bioprinting endothelial cells with alginate for 3D tissue constructs. Khalil S; Sun W J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253 [TBL] [Abstract][Full Text] [Related]
39. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles. Yu G; Fan Y J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556 [TBL] [Abstract][Full Text] [Related]
40. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]