These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 26489143)

  • 1. Condensing position-specific scoring matrixs by the Kidera factors for ligand-binding site prediction.
    Fang C; Noguchi T; Yamana H
    Int J Data Min Bioinform; 2015; 12(1):70-84. PubMed ID: 26489143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information.
    Mishra NK; Raghava GP
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S48. PubMed ID: 20122222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Jul; 17():298. PubMed ID: 27475771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FAD-BERT: Improved prediction of FAD binding sites using pre-training of deep bidirectional transformers.
    Ho QT; Nguyen TT; Khanh Le NQ; Ou YY
    Comput Biol Med; 2021 Apr; 131():104258. PubMed ID: 33601085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNB-PSSM: A spatial neighbor-based PSSM used for protein-RNA binding site prediction.
    Liu Y; Gong W; Yang Z; Li C
    J Mol Recognit; 2021 Jun; 34(6):e2887. PubMed ID: 33442949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.
    Fang C; Noguchi T; Yamana H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1440003. PubMed ID: 25362840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Protein Structural Classes for Low-Similarity Sequences Based on Consensus Sequence and Segmented PSSM.
    Liang Y; Liu S; Zhang S
    Comput Math Methods Med; 2015; 2015():370756. PubMed ID: 26788119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient utilization on PSSM combining with recurrent neural network for membrane protein types prediction.
    Wang S; Li M; Guo L; Cao Z; Fei Y
    Comput Biol Chem; 2019 Aug; 81():9-15. PubMed ID: 31472418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protein structural classes prediction method based on PSI-BLAST profile.
    Ding S; Yan S; Qi S; Li Y; Yao Y
    J Theor Biol; 2014 Jul; 353():19-23. PubMed ID: 24607742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSSM-based prediction of DNA binding sites in proteins.
    Ahmad S; Sarai A
    BMC Bioinformatics; 2005 Feb; 6():33. PubMed ID: 15720719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Gram-Negative Bacterial Secreted Protein Types Prediction Method Based on PSI-BLAST Profile.
    Ding S; Zhang S
    Biomed Res Int; 2016; 2016():3206741. PubMed ID: 27563663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape string: a new feature for prediction of DNA-binding residues.
    Wang DD; Li TH; Sun JM; Li DP; Xiong WW; Wang WY; Tang SN
    Biochimie; 2013 Feb; 95(2):354-8. PubMed ID: 23116714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein structural class using tri-gram probabilities of position-specific scoring matrix and recursive feature elimination.
    Tao P; Liu T; Li X; Chen L
    Amino Acids; 2015 Mar; 47(3):461-8. PubMed ID: 25583603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Remote Homology Detection and Fold Recognition Based on Sequence-Order Frequency Matrix.
    Liu B; Chen J; Guo M; Wang X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):292-300. PubMed ID: 29990004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties.
    Chen SA; Ou YY; Lee TY; Gromiha MM
    Bioinformatics; 2011 Aug; 27(15):2062-7. PubMed ID: 21653515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting flavin and nicotinamide adenine dinucleotide-binding sites in proteins using the fragment transformation method.
    Lu CH; Yu CS; Lin YF; Chen JY
    Biomed Res Int; 2015; 2015():402536. PubMed ID: 26000290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JPPRED: Prediction of Types of J-Proteins from Imbalanced Data Using an Ensemble Learning Method.
    Zhang L; Zhang C; Gao R; Yang R
    Biomed Res Int; 2015; 2015():705156. PubMed ID: 26587542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified sequence-based method for ATP-binding prediction using contextual local evolutionary conservation.
    Fang C; Noguchi T; Yamana H
    Algorithms Mol Biol; 2014 Mar; 9(1):7. PubMed ID: 24618258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.