BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 26489325)

  • 1. [Adsorption Behaviors of Lead on Multi-Walled Carbon Nanotube-Hydroxyapatite Composites].
    Zhang JL; Li Y
    Huan Jing Ke Xue; 2015 Jul; 36(7):2554-63. PubMed ID: 26489325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption characteristics of Pb(II), Cd(II) and Cu(II) on carbon nanotube-hydroxyapatite.
    Li G; Zhang J; Li Y; Liu J; Yan Z
    Environ Technol; 2021 Apr; 42(10):1560-1581. PubMed ID: 31566478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions.
    Zhang L; Xu T; Liu X; Zhang Y; Jin H
    J Hazard Mater; 2011 Dec; 197():389-96. PubMed ID: 22018864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams.
    Jang SH; Min BG; Jeong YG; Lyoo WS; Lee SC
    J Hazard Mater; 2008 Apr; 152(3):1285-92. PubMed ID: 17850963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders.
    Lin K; Pan J; Chen Y; Cheng R; Xu X
    J Hazard Mater; 2009 Jan; 161(1):231-40. PubMed ID: 18573599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes.
    Xu D; Tan X; Chen C; Wang X
    J Hazard Mater; 2008 Jun; 154(1-3):407-16. PubMed ID: 18053642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions.
    Khakpour R; Tahermansouri H
    Int J Biol Macromol; 2018 Apr; 109():598-610. PubMed ID: 29275204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing the removal of divalent cations by hydroxyapatite.
    Smiciklas I; Onjia A; Raicević S; Janaćković D; Mitrić M
    J Hazard Mater; 2008 Apr; 152(2):876-84. PubMed ID: 17764836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.
    Taghavi M; Zazouli MA; Yousefi Z; Akbari-adergani B
    Environ Monit Assess; 2015 Nov; 187(11):682. PubMed ID: 26452506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Pb(II) by adsorption onto Chinese walnut shell activated carbon.
    Yi ZJ; Yao J; Kuang YF; Chen HL; Wang F; Yuan ZM
    Water Sci Technol; 2015; 72(6):983-9. PubMed ID: 26360759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective removal for Pb2+ in aqueous environment by using novel macroreticular PVA beads.
    Zhang Y; Li Y; Li X; Yang L; Bai X; Ye Z; Zhou L; Wang L
    J Hazard Mater; 2010 Sep; 181(1-3):898-907. PubMed ID: 20566241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.
    Mubarak NM; Sahu JN; Abdullah EC; Jayakumar NS
    J Environ Sci (China); 2016 Jul; 45():143-55. PubMed ID: 27372128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils.
    Wang Y; Li R; Liu W; Cheng L; Jiang Q; Zhang Y
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26674-26684. PubMed ID: 31297709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of hydroxyapatite/yeast biomass composites and their adsorption behaviors for lead (II).
    Zhang W; Wang F; Wang P; Lin L; Zhao Y; Zou P; Zhao M; Chen H; Liu Y; Zhang Y
    J Colloid Interface Sci; 2016 Sep; 477():181-90. PubMed ID: 27267041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.
    Prola LD; Machado FM; Bergmann CP; de Souza FE; Gally CR; Lima EC; Adebayo MA; Dias SL; Calvete T
    J Environ Manage; 2013 Nov; 130():166-75. PubMed ID: 24076517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.
    Sekar M; Sakthi V; Rengaraj S
    J Colloid Interface Sci; 2004 Nov; 279(2):307-13. PubMed ID: 15464794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste.
    Liao D; Zheng W; Li X; Yang Q; Yue X; Guo L; Zeng G
    J Hazard Mater; 2010 May; 177(1-3):126-30. PubMed ID: 20042291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of aqueous lead ions by hydroxyapatites: equilibria and kinetic processes.
    Sandrine B; Ange N; Didier BA; Eric C; Patrick S
    J Hazard Mater; 2007 Jan; 139(3):443-6. PubMed ID: 16621277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study.
    Chen S; Ma Y; Chen L; Wang L; Guo H
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.