These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
510 related articles for article (PubMed ID: 26489325)
1. [Adsorption Behaviors of Lead on Multi-Walled Carbon Nanotube-Hydroxyapatite Composites]. Zhang JL; Li Y Huan Jing Ke Xue; 2015 Jul; 36(7):2554-63. PubMed ID: 26489325 [TBL] [Abstract][Full Text] [Related]
2. Adsorption characteristics of Pb(II), Cd(II) and Cu(II) on carbon nanotube-hydroxyapatite. Li G; Zhang J; Li Y; Liu J; Yan Z Environ Technol; 2021 Apr; 42(10):1560-1581. PubMed ID: 31566478 [TBL] [Abstract][Full Text] [Related]
3. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. Zhang L; Xu T; Liu X; Zhang Y; Jin H J Hazard Mater; 2011 Dec; 197():389-96. PubMed ID: 22018864 [TBL] [Abstract][Full Text] [Related]
4. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. Jang SH; Min BG; Jeong YG; Lyoo WS; Lee SC J Hazard Mater; 2008 Apr; 152(3):1285-92. PubMed ID: 17850963 [TBL] [Abstract][Full Text] [Related]
5. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Lin K; Pan J; Chen Y; Cheng R; Xu X J Hazard Mater; 2009 Jan; 161(1):231-40. PubMed ID: 18573599 [TBL] [Abstract][Full Text] [Related]
6. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Xu D; Tan X; Chen C; Wang X J Hazard Mater; 2008 Jun; 154(1-3):407-16. PubMed ID: 18053642 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions. Khakpour R; Tahermansouri H Int J Biol Macromol; 2018 Apr; 109():598-610. PubMed ID: 29275204 [TBL] [Abstract][Full Text] [Related]
8. Factors influencing the removal of divalent cations by hydroxyapatite. Smiciklas I; Onjia A; Raicević S; Janaćković D; Mitrić M J Hazard Mater; 2008 Apr; 152(2):876-84. PubMed ID: 17764836 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent. Taghavi M; Zazouli MA; Yousefi Z; Akbari-adergani B Environ Monit Assess; 2015 Nov; 187(11):682. PubMed ID: 26452506 [TBL] [Abstract][Full Text] [Related]
10. Removal of Pb(II) by adsorption onto Chinese walnut shell activated carbon. Yi ZJ; Yao J; Kuang YF; Chen HL; Wang F; Yuan ZM Water Sci Technol; 2015; 72(6):983-9. PubMed ID: 26360759 [TBL] [Abstract][Full Text] [Related]
11. Selective removal for Pb2+ in aqueous environment by using novel macroreticular PVA beads. Zhang Y; Li Y; Li X; Yang L; Bai X; Ye Z; Zhou L; Wang L J Hazard Mater; 2010 Sep; 181(1-3):898-907. PubMed ID: 20566241 [TBL] [Abstract][Full Text] [Related]
12. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Mubarak NM; Sahu JN; Abdullah EC; Jayakumar NS J Environ Sci (China); 2016 Jul; 45():143-55. PubMed ID: 27372128 [TBL] [Abstract][Full Text] [Related]
13. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils. Wang Y; Li R; Liu W; Cheng L; Jiang Q; Zhang Y Environ Sci Pollut Res Int; 2019 Sep; 26(26):26674-26684. PubMed ID: 31297709 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of hydroxyapatite/yeast biomass composites and their adsorption behaviors for lead (II). Zhang W; Wang F; Wang P; Lin L; Zhao Y; Zou P; Zhao M; Chen H; Liu Y; Zhang Y J Colloid Interface Sci; 2016 Sep; 477():181-90. PubMed ID: 27267041 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. Prola LD; Machado FM; Bergmann CP; de Souza FE; Gally CR; Lima EC; Adebayo MA; Dias SL; Calvete T J Environ Manage; 2013 Nov; 130():166-75. PubMed ID: 24076517 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Sekar M; Sakthi V; Rengaraj S J Colloid Interface Sci; 2004 Nov; 279(2):307-13. PubMed ID: 15464794 [TBL] [Abstract][Full Text] [Related]
17. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. Liao D; Zheng W; Li X; Yang Q; Yue X; Guo L; Zeng G J Hazard Mater; 2010 May; 177(1-3):126-30. PubMed ID: 20042291 [TBL] [Abstract][Full Text] [Related]
18. Removal of aqueous lead ions by hydroxyapatites: equilibria and kinetic processes. Sandrine B; Ange N; Didier BA; Eric C; Patrick S J Hazard Mater; 2007 Jan; 139(3):443-6. PubMed ID: 16621277 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study. Chen S; Ma Y; Chen L; Wang L; Guo H Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990 [TBL] [Abstract][Full Text] [Related]
20. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. Boudrahem F; Aissani-Benissad F; Aït-Amar H J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]