BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 26489454)

  • 1. Simultaneous Intravascular Ultrasound Usage Overcomes Misinterpretation When Evaluating Lipid-Rich Plaques With Optical Frequency Domain Imaging--Ex Vivo Study.
    Torii S; Nakazawa G; Ijichi T; Yoshikawa A; Murakami T; Natsumeda M; Fujii T; Shinozaki N; Yoshimachi F; Morino Y; Ikari Y
    Circ J; 2015; 79(12):2641-7. PubMed ID: 26489454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive Value of Integrated Backscatter IVUS for Detection of Vulnerable Plaque by Optical Frequency Domain Imaging: An Ex Vivo Autopsy Study of Human Coronary Arteries.
    Nakano M; Yahagi K; Yamamoto H; Taniwaki M; Otsuka F; Ladich ER; Joner M; Virmani R
    JACC Cardiovasc Imaging; 2016 Feb; 9(2):163-72. PubMed ID: 26777223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of coronary arterial calcification - Ex-vivo assessment by optical frequency domain imaging.
    Ijichi T; Nakazawa G; Torii S; Nakano M; Yoshikawa A; Morino Y; Ikari Y
    Atherosclerosis; 2015 Nov; 243(1):242-7. PubMed ID: 26408928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results].
    Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study.
    Fujii K; Hao H; Shibuya M; Imanaka T; Fukunaga M; Miki K; Tamaru H; Sawada H; Naito Y; Ohyanagi M; Hirota S; Masuyama T
    JACC Cardiovasc Imaging; 2015 Apr; 8(4):451-460. PubMed ID: 25797121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of early from advanced coronary atherosclerotic lesions: systematic comparison of CT, intravascular US, and optical frequency domain imaging with histopathologic examination in ex vivo human hearts.
    Maurovich-Horvat P; Schlett CL; Alkadhi H; Nakano M; Stolzmann P; Vorpahl M; Scheffel H; Tanaka A; Warger WC; Maehara A; Ma S; Kriegel MF; Kaple RK; Seifarth H; Bamberg F; Mintz GS; Tearney GJ; Virmani R; Hoffmann U
    Radiology; 2012 Nov; 265(2):393-401. PubMed ID: 23012461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence Lifetime Imaging Combined with Conventional Intravascular Ultrasound for Enhanced Assessment of Atherosclerotic Plaques: an Ex Vivo Study in Human Coronary Arteries.
    Fatakdawala H; Gorpas D; Bishop JW; Bec J; Ma D; Southard JA; Margulies KB; Marcu L
    J Cardiovasc Transl Res; 2015 Jun; 8(4):253-63. PubMed ID: 25931307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tangential signal dropout artefact in optical frequency domain imaging.
    Shibutani H; Fujii K; Kawakami R; Imanaka T; Kawai K; Tsujimoto S; Matsumura K; Otagaki M; Morishita S; Hashimoto K; Hirota S; Shiojima I
    EuroIntervention; 2021 Jul; 17(4):e326-e331. PubMed ID: 32338609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative precision of optical frequency domain imaging: direct comparison with frequency domain optical coherence tomography and intravascular ultrasound.
    Kobayashi Y; Kitahara H; Tanaka S; Okada K; Kimura T; Ikeno F; Yock PG; Fitzgerald PJ; Honda Y
    Cardiovasc Interv Ther; 2016 Apr; 31(2):79-88. PubMed ID: 26271203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary Plaque Microstructure and Composition Modify Optical Polarization: A New Endogenous Contrast Mechanism for Optical Frequency Domain Imaging.
    Villiger M; Otsuka K; Karanasos A; Doradla P; Ren J; Lippok N; Shishkov M; Daemen J; Diletti R; van Geuns RJ; Zijlstra F; van Soest G; Libby P; Regar E; Nadkarni SK; Bouma BE
    JACC Cardiovasc Imaging; 2018 Nov; 11(11):1666-1676. PubMed ID: 29248662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of coronary arterial plaque by optical coherence tomography.
    Kume T; Akasaka T; Kawamoto T; Watanabe N; Toyota E; Neishi Y; Sukmawan R; Sadahira Y; Yoshida K
    Am J Cardiol; 2006 Apr; 97(8):1172-5. PubMed ID: 16616021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the thickness of coronary calcium by 60-MHz intravascular ultrasound: head-to-head comparison with optical frequency domain imaging.
    Oshikiri Y; Ishida M; Sakamoto R; Kimura T; Shimoda Y; Koeda Y; Shimada R; Itoh T; Morino Y
    Int J Cardiovasc Imaging; 2023 Dec; 39(12):2599-2607. PubMed ID: 37776384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of optical coronary tomography in quantitative measurement of coronary arteries with lipid-rich plaque.
    Kubo T; Yamano T; Liu Y; Ino Y; Shiono Y; Orii M; Taruya A; Nishiguchi T; Shimokado A; Teraguchi I; Tanimoto T; Kitabata H; Yamaguchi T; Hirata K; Tanaka A; Akasaka T
    Circ J; 2015; 79(3):600-6. PubMed ID: 25492038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravascular imaging and histological correlates of medial and intimal calcification in peripheral artery disease.
    Jinnouchi H; Sato Y; Bhoite RR; Kuntz SH; Sakamoto A; Kutyna M; Torii S; Mori M; Kawakami R; Amoa FC; Kolodgie FD; Virmani R; Finn AV
    EuroIntervention; 2021 Oct; 17(8):e688-e698. PubMed ID: 33896763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-definition intravascular ultrasound versus optical frequency domain imaging for the detection of calcium modification and fracture in heavily calcified coronary lesion.
    Ishida M; Oshikiri Y; Kimura T; Sakamoto R; Shimoda Y; Ishikawa Y; Koeda Y; Taguchi Y; Itoh T; Morino Y
    Int J Cardiovasc Imaging; 2022 Jun; 38(6):1203-1212. PubMed ID: 34988783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iMap-Intravascular Ultrasound Radiofrequency Signal Analysis Reflects Plaque Components of Optical Coherence Tomography-Derived Thin-Cap Fibroatheroma.
    Koga S; Ikeda S; Miura M; Yoshida T; Nakata T; Koide Y; Kawano H; Maemura K
    Circ J; 2015; 79(10):2231-7. PubMed ID: 26289833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interobserver variability in assessments of atherosclerotic lesion type via optical frequency domain imaging.
    Shibutani H; Fujii K; Kawakami R; Imanaka T; Kawai K; Tsujimoto S; Matsumura K; Otagaki M; Morishita S; Hashimoto K; Hao H; Hirota S; Shiojima I
    J Cardiol; 2021 May; 77(5):465-470. PubMed ID: 33257209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of lipid-laden atherosclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals: in vitro validation and preliminary in vivo application.
    Murashige A; Hiro T; Fujii T; Imoto K; Murata T; Fukumoto Y; Matsuzaki M
    J Am Coll Cardiol; 2005 Jun; 45(12):1954-60. PubMed ID: 15963392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol crystal depth in coronary atherosclerotic plaques: A novel index of plaque vulnerability using optical frequency domain imaging.
    Koide M; Matsuo A; Shimoo S; Takamatsu K; Kyodo A; Tsuji Y; Mera K; Tsubakimoto Y; Isodono K; Sakatani T; Inoue K; Fujita H
    PLoS One; 2017; 12(6):e0180303. PubMed ID: 28665970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute Coronary Syndrome Demonstrating Plaque Rupture in Calcified Lesions Visualized by Optical Frequency Domain Imaging.
    Goryo Y; Kume T; Kobayashi Y; Okamoto H; Kawamura A; Fukuhara K; Koyama T; Yamada R; Imai K; Neishi Y; Uemura S
    Int Heart J; 2017 Feb; 58(1):131-133. PubMed ID: 28077820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.