These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 26489466)

  • 1. Influx-Operated Ca(2+) Entry via PKD2-L1 and PKD1-L3 Channels Facilitates Sensory Responses to Polymodal Transient Stimuli.
    Hu M; Liu Y; Wu J; Liu X
    Cell Rep; 2015 Oct; 13(4):798-811. PubMed ID: 26489466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels.
    Zheng W; Yang X; Hu R; Cai R; Hofmann L; Wang Z; Hu Q; Liu X; Bulkley D; Yu Y; Tang J; Flockerzi V; Cao Y; Cao E; Chen XZ
    Nat Commun; 2018 Jun; 9(1):2302. PubMed ID: 29899465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polycystin complex mediates Wnt/Ca(2+) signalling.
    Kim S; Nie H; Nesin V; Tran U; Outeda P; Bai CX; Keeling J; Maskey D; Watnick T; Wessely O; Tsiokas L
    Nat Cell Biol; 2016 Jul; 18(7):752-764. PubMed ID: 27214281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2.
    Molland KL; Narayanan A; Burgner JW; Yernool DA
    Biochem J; 2010 Jul; 429(1):171-83. PubMed ID: 20408813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The single pore residue Asp523 in PKD2L1 determines Ca2+ permeation of the PKD1L3/PKD2L1 complex.
    Fujimoto C; Ishimaru Y; Katano Y; Misaka T; Yamasoba T; Asakura T; Abe K
    Biochem Biophys Res Commun; 2011 Jan; 404(4):946-51. PubMed ID: 21185261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling.
    Xu C; Rossetti S; Jiang L; Harris PC; Brown-Glaberman U; Wandinger-Ness A; Bacallao R; Alper SL
    Am J Physiol Renal Physiol; 2007 Mar; 292(3):F930-45. PubMed ID: 17090781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels.
    Van Goor F; Krsmanovic LZ; Catt KJ; Stojilkovic SS
    Mol Endocrinol; 1999 Apr; 13(4):587-603. PubMed ID: 10194765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycystin-2 accelerates Ca2+ release from intracellular stores in Caenorhabditis elegans.
    Koulen P; Duncan RS; Liu J; Cohen NE; Yannazzo JA; McClung N; Lockhart CL; Branden M; Buechner M
    Cell Calcium; 2005 Jun; 37(6):593-601. PubMed ID: 15862350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.
    Su Q; Hu F; Liu Y; Ge X; Mei C; Yu S; Shen A; Zhou Q; Yan C; Lei J; Zhang Y; Liu X; Wang T
    Nat Commun; 2018 Mar; 9(1):1192. PubMed ID: 29567962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that polycystins are involved in Hydra cnidocyte discharge.
    McLaughlin S
    Invert Neurosci; 2017 Mar; 17(1):1. PubMed ID: 28078622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atypical calcium regulation of the PKD2-L1 polycystin ion channel.
    DeCaen PG; Liu X; Abiria S; Clapham DE
    Elife; 2016 Jun; 5():. PubMed ID: 27348301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pituitary adenylate cyclase-activating polypeptide induces a sustained increase in intracellular free Ca(2+) concentration and catechol amine release by activating Ca(2+) influx via receptor-stimulated Ca(2+) entry, independent of store-operated Ca(2+) channels, and voltage-dependent Ca(2+) channels in bovine adrenal medullary chromaffin cells.
    Morita K; Sakakibara A; Kitayama S; Kumagai K; Tanne K; Dohi T
    J Pharmacol Exp Ther; 2002 Sep; 302(3):972-82. PubMed ID: 12183654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabotropic receptor-activated calcium increases and store-operated calcium influx in mouse Müller cells.
    Da Silva N; Herron CE; Stevens K; Jollimore CA; Barnes S; Kelly ME
    Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):3065-73. PubMed ID: 18316702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intricate interaction between store-operated calcium entry and calcium-activated chloride channels in pulmonary artery smooth muscle cells.
    Forrest AS; Angermann JE; Raghunathan R; Lachendro C; Greenwood IA; Leblanc N
    Adv Exp Med Biol; 2010; 661():31-55. PubMed ID: 20204722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents.
    Hanaoka K; Qian F; Boletta A; Bhunia AK; Piontek K; Tsiokas L; Sukhatme VP; Guggino WB; Germino GG
    Nature; 2000 Dec 21-28; 408(6815):990-4. PubMed ID: 11140688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of store-operated Ca(2+) channels in trabecular meshwork cells.
    Abad E; Lorente G; Gavara N; Morales M; Gual A; Gasull X
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):677-86. PubMed ID: 18235014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2.
    Anyatonwu GI; Estrada M; Tian X; Somlo S; Ehrlich BE
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6454-9. PubMed ID: 17404231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRP channels and kidney disease: lessons from polycystic kidney disease.
    Qamar S; Vadivelu M; Sandford R
    Biochem Soc Trans; 2007 Feb; 35(Pt 1):124-8. PubMed ID: 17233617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin.
    Wu Y; Dai XQ; Li Q; Chen CX; Mai W; Hussain Z; Long W; Montalbetti N; Li G; Glynne R; Wang S; Cantiello HF; Wu G; Chen XZ
    Hum Mol Genet; 2006 Nov; 15(22):3280-92. PubMed ID: 17008358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-conductance Ca2+-dependent K+ channels are the target of spike-induced Ca2+ release in a feedback regulation of pyramidal cell excitability.
    Yamada S; Takechi H; Kanchiku I; Kita T; Kato N
    J Neurophysiol; 2004 May; 91(5):2322-9. PubMed ID: 14695351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.