BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26489510)

  • 21. A Markov random field model for network-based analysis of genomic data.
    Wei Z; Li H
    Bioinformatics; 2007 Jun; 23(12):1537-44. PubMed ID: 17483504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel pathway-based distance score enhances assessment of disease heterogeneity in gene expression.
    Yan X; Liang A; Gomez J; Cohn L; Zhao H; Chupp GL
    BMC Bioinformatics; 2017 Jun; 18(1):309. PubMed ID: 28637421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrative enrichment analysis: a new computational method to detect dysregulated pathways in heterogeneous samples.
    Yu X; Zeng T; Li G
    BMC Genomics; 2015 Nov; 16():918. PubMed ID: 26556243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extending pathways based on gene lists using InterPro domain signatures.
    Hahne F; Mehrle A; Arlt D; Poustka A; Wiemann S; Beissbarth T
    BMC Bioinformatics; 2008 Jan; 9():3. PubMed ID: 18177498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways.
    Garmhausen M; Hofmann F; Senderov V; Thomas M; Kandel BA; Habermann BH
    BMC Genomics; 2015 Oct; 16():790. PubMed ID: 26467653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ranking metrics in gene set enrichment analysis: do they matter?
    Zyla J; Marczyk M; Weiner J; Polanska J
    BMC Bioinformatics; 2017 May; 18(1):256. PubMed ID: 28499413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using the topology of metabolic networks to predict viability of mutant strains.
    Wunderlich Z; Mirny LA
    Biophys J; 2006 Sep; 91(6):2304-11. PubMed ID: 16782788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CEA: Combination-based gene set functional enrichment analysis.
    Sun D; Liu Y; Zhang XS; Wu LY
    Sci Rep; 2018 Aug; 8(1):13085. PubMed ID: 30166636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes.
    Gu Z; Liu J; Cao K; Zhang J; Wang J
    BMC Syst Biol; 2012 Jun; 6():56. PubMed ID: 22672776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A MATLAB tool for pathway enrichment using a topology-based pathway regulation score.
    Ibrahim M; Jassim S; Cawthorne MA; Langlands K
    BMC Bioinformatics; 2014 Nov; 15(1):358. PubMed ID: 25367050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles.
    Edelman E; Porrello A; Guinney J; Balakumaran B; Bild A; Febbo PG; Mukherjee S
    Bioinformatics; 2006 Jul; 22(14):e108-16. PubMed ID: 16873460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferring active regulatory networks from gene expression data using a combination of prior knowledge and enrichment analysis.
    Chouvardas P; Kollias G; Nikolaou C
    BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):181. PubMed ID: 27295045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
    Hu YS; Xin J; Hu Y; Zhang L; Wang J
    Alzheimers Res Ther; 2017 Apr; 9(1):29. PubMed ID: 28446202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inferring pathway crosstalk networks using gene set co-expression signatures.
    Wang T; Gu J; Yuan J; Tao R; Li Y; Li S
    Mol Biosyst; 2013 Jul; 9(7):1822-8. PubMed ID: 23591523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model-free unsupervised gene set screening based on information enrichment in expression profiles.
    Niida A; Imoto S; Yamaguchi R; Nagasaki M; Fujita A; Shimamura T; Miyano S
    Bioinformatics; 2010 Dec; 26(24):3090-7. PubMed ID: 20959379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GSEA-InContext: identifying novel and common patterns in expression experiments.
    Powers RK; Goodspeed A; Pielke-Lombardo H; Tan AC; Costello JC
    Bioinformatics; 2018 Jul; 34(13):i555-i564. PubMed ID: 29950010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PathNet: a tool for pathway analysis using topological information.
    Dutta B; Wallqvist A; Reifman J
    Source Code Biol Med; 2012 Sep; 7(1):10. PubMed ID: 23006764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SubMAP: aligning metabolic pathways with subnetwork mappings.
    Ay F; Kellis M; Kahveci T
    J Comput Biol; 2011 Mar; 18(3):219-35. PubMed ID: 21385030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network enrichment analysis: extension of gene-set enrichment analysis to gene networks.
    Alexeyenko A; Lee W; Pernemalm M; Guegan J; Dessen P; Lazar V; Lehtiƶ J; Pawitan Y
    BMC Bioinformatics; 2012 Sep; 13():226. PubMed ID: 22966941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.