BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2648990)

  • 1. Combined effect of water activity and pH on inhibition of toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes.
    Dodds KL
    Appl Environ Microbiol; 1989 Mar; 55(3):656-60. PubMed ID: 2648990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C.
    Lund BM; Graham AF; George SM
    J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G.
    Briozzo J; de Lagarde EA; Chirife J; Parada JL
    Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxin production by Clostridium botulinum in grass.
    Notermans S; Kozaki S; van Schothorst M
    Appl Environ Microbiol; 1979 Nov; 38(5):767-71. PubMed ID: 44443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails.
    Lyon WJ; Reddmann CS
    J Food Prot; 2000 Dec; 63(12):1687-96. PubMed ID: 11131892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonproteolytic Clostridium botulinum toxigenesis in cooked turkey stored under modified atmospheres.
    Lawlor KA; Pierson MD; Hackney CR; Claus JR; Marcy JE
    J Food Prot; 2000 Nov; 63(11):1511-6. PubMed ID: 11079692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.
    Golden MC; Wanless BJ; David JRD; Lineback DS; Talley RJ; Kottapalli B; Glass KA
    J Food Prot; 2017 Aug; 80(8):1252-1258. PubMed ID: 28686492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and toxigenesis of C. botulinum type E in fishes packaged under modified atmospheres.
    Baker DA; Genigeorgis C; Glover J; Razavilar V
    Int J Food Microbiol; 1990 May; 10(3-4):269-89. PubMed ID: 2204405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ethanol on the growth of Clostridium botulinum.
    Daifas DP; Smith JP; Blanchfield B; Cadieux B; Sanders G; Austin JW
    J Food Prot; 2003 Apr; 66(4):610-7. PubMed ID: 12696684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and toxin production by Clostridium botulinum on sliced raw potatoes in a modified atmosphere with and without sulfite.
    Solomon HM; Rhodehamel EJ; Kautter DA
    J Food Prot; 1998 Jan; 61(1):126-8. PubMed ID: 9708268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack.
    Kimura B; Kimura R; Fukaya T; Sakuma K; Miya S; Fujii T
    J Food Prot; 2008 Mar; 71(3):468-72. PubMed ID: 18389687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combined effect of sub-optimal temperature and sub-optimal pH on growth and toxin formation from spores of Clostridium botulinum.
    Graham AF; Lund BM
    J Appl Bacteriol; 1987 Nov; 63(5):387-93. PubMed ID: 3326865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production.
    Ma L; Zhang G; Sobel J; Doyle MP
    J Food Prot; 2007 Dec; 70(12):2860-3. PubMed ID: 18095444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling lag phase of nonproteolytic Clostridium botulinum toxigenesis in cooked turkey and chicken breast as affected by temperature, sodium lactate, sodium chloride and spore inoculum.
    Meng J; Genigeorgis CA
    Int J Food Microbiol; 1993 Jul; 19(2):109-22. PubMed ID: 8398625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and toxin production by Clostridium botulinum in English-style crumpets packaged under modified atmospheres.
    Daifas DP; Smith JP; Blanchfield B; Austin JW
    J Food Prot; 1999 Apr; 62(4):349-55. PubMed ID: 10419207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1979 Mar; 37(3):496-504. PubMed ID: 36843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners.
    Bowen VG; Cerveny JG; Deibel RH
    Appl Microbiol; 1974 Mar; 27(3):605-6. PubMed ID: 4596392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychrotrophic clostridia mediated gas and botulinal toxin production in vacuum-packed chilled meat.
    Moorhead SM; Bell RG
    Lett Appl Microbiol; 1999 Feb; 28(2):108-12. PubMed ID: 10063639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.
    Carlin F; Peck MW
    Appl Environ Microbiol; 1996 Aug; 62(8):3069-72. PubMed ID: 8702303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and toxin production by Clostridium botulinum in moldy tomato juice.
    Huhtanen CN; Naghski J; Custer CS; Russell RW
    Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.