These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26489906)

  • 1. Unified variable selection in semi-parametric models.
    Terry W; Zhang H; Maity A; Arshad H; Karmaus W
    Stat Methods Med Res; 2017 Dec; 26(6):2821-2831. PubMed ID: 26489906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable selection in semi-parametric models.
    Zhang H; Maity A; Arshad H; Holloway J; Karmaus W
    Stat Methods Med Res; 2016 Aug; 25(4):1736-52. PubMed ID: 23990355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian variable and model selection methods for genetic association studies.
    Fridley BL
    Genet Epidemiol; 2009 Jan; 33(1):27-37. PubMed ID: 18618760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint Bayesian variable and graph selection for regression models with network-structured predictors.
    Peterson CB; Stingo FC; Vannucci M
    Stat Med; 2016 Mar; 35(7):1017-31. PubMed ID: 26514925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast algorithm for Bayesian multi-locus model in genome-wide association studies.
    Duan W; Zhao Y; Wei Y; Yang S; Bai J; Shen S; Du M; Huang L; Hu Z; Chen F
    Mol Genet Genomics; 2017 Aug; 292(4):923-934. PubMed ID: 28534238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the architecture of genetic and epigenetic regulation: a maximum likelihood model.
    Wang F; Zhang S; Wen Y; Wei Y; Yan H; Liu H; Su J; Zhang Y; Che J
    Brief Bioinform; 2014 Nov; 15(6):1028-43. PubMed ID: 24174551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference supports a location and neighbour-dependent model of DNA methylation propagation at the MGMT gene promoter in lung tumours.
    Bonello N; Sampson J; Burn J; Wilson IJ; McGrown G; Margison GP; Thorncroft M; Crossbie P; Povey AC; Santibanez-Koref M; Walters K
    J Theor Biol; 2013 Nov; 336():87-95. PubMed ID: 23911575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting associated single-nucleotide polymorphisms on the X chromosome in case control genome-wide association studies.
    Chen Z; Ng HK; Li J; Liu Q; Huang H
    Stat Methods Med Res; 2017 Apr; 26(2):567-582. PubMed ID: 25253574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian mixed-effects location and scale models for multivariate longitudinal outcomes: an application to ecological momentary assessment data.
    Kapur K; Li X; Blood EA; Hedeker D
    Stat Med; 2015 Feb; 34(4):630-51. PubMed ID: 25409923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure.
    Bock C; Paulsen M; Tierling S; Mikeska T; Lengauer T; Walter J
    PLoS Genet; 2006 Mar; 2(3):e26. PubMed ID: 16520826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian random effects selection in mixed accelerated failure time model for interval-censored data.
    Harun N; Cai B
    Stat Med; 2014 Mar; 33(6):971-84. PubMed ID: 24123191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kernel machine methods for integrative analysis of genome-wide methylation and genotyping studies.
    Zhao N; Zhan X; Huang YT; Almli LM; Smith A; Epstein MP; Conneely K; Wu MC
    Genet Epidemiol; 2018 Mar; 42(2):156-167. PubMed ID: 29285792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis.
    Bhadra A; Mallick BK
    Biometrics; 2013 Jun; 69(2):447-57. PubMed ID: 23607608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power of a reproducing kernel-based method for testing the joint effect of a set of single-nucleotide polymorphisms.
    He H; Zhang H; Maity A; Zou Y; Hussey J; Karmaus W
    Genetica; 2012 Dec; 140(10-12):421-7. PubMed ID: 23180006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
    Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G
    G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melissa: Bayesian clustering and imputation of single-cell methylomes.
    Kapourani CA; Sanguinetti G
    Genome Biol; 2019 Mar; 20(1):61. PubMed ID: 30898142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latent variable models for gene-environment interactions in longitudinal studies with multiple correlated exposures.
    Tao Y; Sánchez BN; Mukherjee B
    Stat Med; 2015 Mar; 34(7):1227-41. PubMed ID: 25545894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.