These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26490118)

  • 1. Autophagy protects against de novo formation of the [PSI+] prion in yeast.
    Speldewinde SH; Doronina VA; Grant CM
    Mol Biol Cell; 2015 Dec; 26(25):4541-51. PubMed ID: 26490118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant.
    Sideri TC; Koloteva-Levine N; Tuite MF; Grant CM
    J Biol Chem; 2011 Nov; 286(45):38924-31. PubMed ID: 21832086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation.
    Speldewinde SH; Doronina VA; Tuite MF; Grant CM
    PLoS Genet; 2017 Apr; 13(4):e1006708. PubMed ID: 28369054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae.
    Choe YJ; Ryu Y; Kim HJ; Seok YJ
    Eukaryot Cell; 2009 Jul; 8(7):968-76. PubMed ID: 19411620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].
    Du Z; Li L
    Genetics; 2014 Jun; 197(2):685-700. PubMed ID: 24727082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast.
    Sideri TC; Stojanovski K; Tuite MF; Grant CM
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6394-9. PubMed ID: 20308573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion.
    Doronina VA; Staniforth GL; Speldewinde SH; Tuite MF; Grant CM
    Mol Microbiol; 2015 Apr; 96(1):163-74. PubMed ID: 25601439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rnq1 protein protects [PSI^(+)] prion from effect of the PNM mutation].
    Bondarev SA; Likholetova DV; Belousov MV; Zhouravleva GA
    Mol Biol (Mosk); 2017; 51(2):367-371. PubMed ID: 28537243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous aggregates promote de novo prion appearance via more than one mechanism.
    Arslan F; Hong JY; Kanneganti V; Park SK; Liebman SW
    PLoS Genet; 2015 Jan; 11(1):e1004814. PubMed ID: 25568955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolysis suppresses spontaneous prion generation in yeast.
    Okamoto A; Hosoda N; Tanaka A; Newnam GP; Chernoff YO; Hoshino SI
    J Biol Chem; 2017 Dec; 292(49):20113-20124. PubMed ID: 29038292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids.
    Salnikova AB; Kryndushkin DS; Smirnov VN; Kushnirov VV; Ter-Avanesyan MD
    J Biol Chem; 2005 Mar; 280(10):8808-12. PubMed ID: 15618222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+].
    Allen KD; Wegrzyn RD; Chernova TA; Müller S; Newnam GP; Winslett PA; Wittich KB; Wilkinson KD; Chernoff YO
    Genetics; 2005 Mar; 169(3):1227-42. PubMed ID: 15545639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions among prions and prion "strains" in yeast.
    Bradley ME; Edskes HK; Hong JY; Wickner RB; Liebman SW
    Proc Natl Acad Sci U S A; 2002 Dec; 99 Suppl 4(Suppl 4):16392-9. PubMed ID: 12149514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sup35 methionine oxidation is a trigger for de novo [PSI(+)] prion formation.
    Grant CM
    Prion; 2015; 9(4):257-65. PubMed ID: 26267336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prion formation and polyglutamine aggregation are controlled by two classes of genes.
    Manogaran AL; Hong JY; Hufana J; Tyedmers J; Lindquist S; Liebman SW
    PLoS Genet; 2011 May; 7(5):e1001386. PubMed ID: 21625618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Destabilizing interactions among [PSI(+)] and [PIN(+)] yeast prion variants.
    Bradley ME; Liebman SW
    Genetics; 2003 Dec; 165(4):1675-85. PubMed ID: 14704158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition of Psi+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein.
    Kochneva-Pervukhova NV; Paushkin SV; Kushnirov VV; Cox BS; Tuite MF; Ter-Avanesyan MD
    EMBO J; 1998 Oct; 17(19):5805-10. PubMed ID: 9755180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selfish prion of Rnq1 mutant in yeast.
    Kurahashi H; Shibata S; Ishiwata M; Nakamura Y
    Genes Cells; 2009 May; 14(5):659-68. PubMed ID: 19371377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonsense Mutations in the Yeast
    Trubitsina NP; Zemlyanko OM; Bondarev SA; Zhouravleva GA
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.