BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26490170)

  • 1. Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy.
    Fonsêca A; Ferraz ME; Pedrosa-Harand A
    Chromosoma; 2016 Jun; 125(3):413-21. PubMed ID: 26490170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple and independent rearrangements revealed by comparative cytogenetic mapping in the dysploid Leptostachyus group (Phaseolus L., Leguminosae).
    Ferraz ME; Fonsêca A; Pedrosa-Harand A
    Chromosome Res; 2020 Dec; 28(3-4):395-405. PubMed ID: 33191473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae).
    Almeida C; Pedrosa-Harand A
    Cytogenet Genome Res; 2011; 132(3):212-7. PubMed ID: 21063080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High rates of structural rearrangements have shaped the chromosome evolution in dysploid Phaseolus beans.
    Nascimento T; Pedrosa-Harand A
    Theor Appl Genet; 2023 Sep; 136(10):215. PubMed ID: 37751069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus.
    Fonsêca A; Pedrosa-Harand A
    Genome; 2013 Jun; 56(6):335-43. PubMed ID: 23957673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers.
    de Melo NF; Guerra M
    Ann Bot; 2003 Aug; 92(2):309-16. PubMed ID: 12876193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH.
    Vasconcelos EV; de Andrade Fonsêca AF; Pedrosa-Harand A; de Andrade Bortoleti KC; Benko-Iseppon AM; da Costa AF; Brasileiro-Vidal AC
    Chromosome Res; 2015 Jun; 23(2):253-66. PubMed ID: 25634499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans.
    Ferraz ME; Ribeiro T; Sader M; Nascimento T; Pedrosa-Harand A
    Chromosome Res; 2023 Oct; 31(4):30. PubMed ID: 37812264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Karyotype evolution in Phalaris (Poaceae): The role of reductional dysploidy, polyploidy and chromosome alteration in a wide-spread and diverse genus.
    Winterfeld G; Becher H; Voshell S; Hilu K; Röser M
    PLoS One; 2018; 13(2):e0192869. PubMed ID: 29462207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis.
    Yang L; Koo DH; Li D; Zhang T; Jiang J; Luan F; Renner SS; Hénaff E; Sanseverino W; Garcia-Mas J; Casacuberta J; Senalik DA; Simon PW; Chen J; Weng Y
    Plant J; 2014 Jan; 77(1):16-30. PubMed ID: 24127692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome number reduction in the sister clade of Carica papaya with concomitant genome size doubling.
    Rockinger A; Sousa A; Carvalho FA; Renner SS
    Am J Bot; 2016 Jun; 103(6):1082-8. PubMed ID: 27234227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris.
    do Vale Martins L; de Oliveira Bustamante F; da Silva Oliveira AR; da Costa AF; de Lima Feitoza L; Liang Q; Zhao H; Benko-Iseppon AM; Muñoz-Amatriaín M; Pedrosa-Harand A; Jiang J; Brasileiro-Vidal AC
    Chromosoma; 2021 Sep; 130(2-3):133-147. PubMed ID: 33909141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V. unguiculata), and common bean (Phaseolus vulgaris).
    Oliveira ARDS; Martins LDV; Bustamante FO; Muñoz-Amatriaín M; Close T; da Costa AF; Benko-Iseppon AM; Pedrosa-Harand A; Brasileiro-Vidal AC
    Chromosome Res; 2020 Dec; 28(3-4):293-306. PubMed ID: 32654079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae).
    Sousa A; Cusimano N; Renner SS
    Ann Bot; 2014 Mar; 113(4):669-80. PubMed ID: 24500949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon, B. stacei and B. hybridum.
    Lusinska J; Majka J; Betekhtin A; Susek K; Wolny E; Hasterok R
    Ann Bot; 2018 Aug; 122(3):445-459. PubMed ID: 29893795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytogenetic characterization and karyotype evolution in six
    de Barros D; Montenegro C; Gomes M; Ferraz ME; Miotto STS; Pedrosa-Harand A
    Genome; 2023 Jul; 66(7):165-174. PubMed ID: 37094381
    [No Abstract]   [Full Text] [Related]  

  • 17. High macro-collinearity between lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) as revealed by comparative cytogenetic mapping.
    Almeida C; Pedrosa-Harand A
    Theor Appl Genet; 2013 Jul; 126(7):1909-16. PubMed ID: 23649647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the karyotype evolution of brachypodium species using comparative chromosome barcoding.
    Idziak D; Hazuka I; Poliwczak B; Wiszynska A; Wolny E; Hasterok R
    PLoS One; 2014; 9(3):e93503. PubMed ID: 24675822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How diploidization turned a tetraploid into a pseudotriploid.
    Mandáková T; Gloss AD; Whiteman NK; Lysak MA
    Am J Bot; 2016 Jul; 103(7):1187-96. PubMed ID: 27206460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Mechanisms of Karyotype Evolution in Heterotaxis (Orchidaceae).
    Moraes AP; Olmos Simões A; Ojeda Alayon DI; de Barros F; Forni-Martins ER
    PLoS One; 2016; 11(11):e0165960. PubMed ID: 27832130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.