BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 26490245)

  • 1. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits.
    Berecki G; Motin L; Adams DJ
    Mol Pharmacol; 2016 Jan; 89(1):187-96. PubMed ID: 26490245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mu-opioid receptor activation inhibits N- and P-type Ca2+ channel currents in magnocellular neurones of the rat supraoptic nucleus.
    Soldo BL; Moises HC
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):787-804. PubMed ID: 9824718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-dependent inhibition of Ca2+ channels in GH3 cells by cloned mu- and delta-opioid receptors.
    Piros ET; Prather PL; Law PY; Evans CJ; Hales TG
    Mol Pharmacol; 1996 Oct; 50(4):947-56. PubMed ID: 8863841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opioid modulation of extracellular signal-regulated protein kinase activity is ras-dependent and involves Gbetagamma subunits.
    Belcheva MM; Vogel Z; Ignatova E; Avidor-Reiss T; Zippel R; Levy R; Young EC; Barg J; Coscia CJ
    J Neurochem; 1998 Feb; 70(2):635-45. PubMed ID: 9453557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of direct Cav2.2 channel block by the κ-opioid receptor agonist U50488H.
    Berecki G; Motin L; Adams DJ
    Neuropharmacology; 2016 Oct; 109():49-58. PubMed ID: 27245500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mu and delta opioids but not kappa opioid inhibit voltage-activated Ba2+ currents in neuronal F-11 cell.
    Nah SY; Unteutsch A; Bunzow JR; Cook SP; Beacham DW; Grandy DK
    Brain Res; 1997 Aug; 766(1-2):66-71. PubMed ID: 9359588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective interference of beta-arrestin 1 with kappa and delta but not mu opioid receptor/G protein coupling.
    Cheng ZJ; Yu QM; Wu YL; Ma L; Pei G
    J Biol Chem; 1998 Sep; 273(38):24328-33. PubMed ID: 9733719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential coupling of mu-, delta-, and kappa-opioid receptors to G alpha16-mediated stimulation of phospholipase C.
    Lee JW; Joshi S; Chan JS; Wong YH
    J Neurochem; 1998 May; 70(5):2203-11. PubMed ID: 9572309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu-delta opioid receptor functional interaction: Insight using receptor-G protein fusions.
    Snook LA; Milligan G; Kieffer BL; Massotte D
    J Pharmacol Exp Ther; 2006 Aug; 318(2):683-90. PubMed ID: 16690720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling.
    Wang HY; Friedman E; Olmstead MC; Burns LH
    Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional compartmentalization of opioid desensitization in primary sensory neurons.
    Samoriski GM; Gross RA
    J Pharmacol Exp Ther; 2000 Aug; 294(2):500-9. PubMed ID: 10900225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of calcium currents in rat colon sensory neurons by K- but not mu- or delta-opioids.
    Su X; Wachtel RE; Gebhart GF
    J Neurophysiol; 1998 Dec; 80(6):3112-9. PubMed ID: 9862909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and α-conotoxin Vc1.1 via GABAB receptor activation.
    Berecki G; McArthur JR; Cuny H; Clark RJ; Adams DJ
    J Gen Physiol; 2014 Apr; 143(4):465-79. PubMed ID: 24688019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological demonstration of mu, delta and kappa opioid receptors in the ventral pallidum.
    Mitrovic I; Napier TC
    J Pharmacol Exp Ther; 1995 Mar; 272(3):1260-70. PubMed ID: 7891342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of dopamine D1-like receptor signaling by concomitant activation of δ- and μ-opioid receptors in mouse medial prefrontal cortex.
    Olianas MC; Dedoni S; Onali P
    Neurochem Int; 2012 Dec; 61(8):1404-16. PubMed ID: 23073238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurokinin 1 receptors trigger overlapping stimulation and inhibition of CaV2.3 (R-type) calcium channels.
    Meza U; Thapliyal A; Bannister RA; Adams BA
    Mol Pharmacol; 2007 Jan; 71(1):284-93. PubMed ID: 17050807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of Cav2.2 channel exon 37 variants by alternatively spliced μ-opioid receptors.
    Gandini MA; Souza IA; Raval D; Xu J; Pan YX; Zamponi GW
    Mol Brain; 2019 Nov; 12(1):98. PubMed ID: 31775826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective interactions of spinophilin with the C-terminal domains of the δ- and μ-opioid receptors and G proteins differentially modulate opioid receptor signaling.
    Fourla DD; Papakonstantinou MP; Vrana SM; Georgoussi Z
    Cell Signal; 2012 Dec; 24(12):2315-28. PubMed ID: 22922354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide-independent modulation of Ca(2+)-dependent K+ channel current by a mu-type opioid receptor.
    Twitchell WA; Rane SG
    Mol Pharmacol; 1994 Nov; 46(5):793-8. PubMed ID: 7969064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of calcium channels by opioid- and adenosine-receptor agonists in neurons of the nucleus accumbens.
    Chieng B; Bekkers JM
    Br J Pharmacol; 2001 Jun; 133(3):337-44. PubMed ID: 11375249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.