These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26490552)

  • 1. Triclosan removal in wetlands constructed with different aquatic plants.
    Liu J; Wang J; Zhao C; Hay AG; Xie H; Zhan J
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1459-1467. PubMed ID: 26490552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants.
    Zhao C; Xie H; Xu J; Xu X; Zhang J; Hu Z; Liu C; Liang S; Wang Q; Wang J
    Sci Total Environ; 2015 Feb; 505():633-9. PubMed ID: 25461066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland.
    Zarate FM; Schulwitz SE; Stevens KJ; Venables BJ
    Chemosphere; 2012 Jul; 88(3):323-9. PubMed ID: 22483729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): In the case of triclosan.
    Zhao C; Xie H; Xu J; Zhang J; Liang S; Hao J; Ngo HH; Guo W; Xu X; Wang Q; Wang J
    Sci Total Environ; 2016 Mar; 547():9-16. PubMed ID: 26780127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides.
    Xie H; Yang Y; Liu J; Kang Y; Zhang J; Hu Z; Liang S
    Water Res; 2018 Oct; 143():457-466. PubMed ID: 29986254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers.
    Zhou H; Liu X; Chen X; Ying T; Ying Z
    Sci Total Environ; 2018 Sep; 636():1291-1302. PubMed ID: 29913591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triclosan inhibits arbuscular mycorrhizal colonization in three wetland plants.
    Twanabasu BR; Smith CM; Stevens KJ; Venables BJ; Sears WC
    Sci Total Environ; 2013 Mar; 447():450-7. PubMed ID: 23410867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and mechanism of triclosan removal in simultaneous nitrification and denitrification (SND) process under low-oxygen condition.
    Liu J; Wang J; Zhao C; Liu J; Xie H; Wang S; Zhang J; Hu Z
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1653-1660. PubMed ID: 27826723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants.
    Ying GG; Kookana RS
    Environ Int; 2007 Feb; 33(2):199-205. PubMed ID: 17055058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems.
    Guo Q; Yan J; Wen J; Hu Y; Chen Y; Wu W
    Sci Total Environ; 2016 Nov; 571():1304-11. PubMed ID: 27476727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.
    Tee HC; Seng CE; Noor AM; Lim PE
    Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides.
    Couto N; Ferreira AR; Guedes P; Mateus E; Ribeiro AB
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35928-35935. PubMed ID: 30191527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA.
    Kumar KS; Priya SM; Peck AM; Sajwan KS
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):275-85. PubMed ID: 19756845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.
    Hsieh CY; Yang L; Kuo WC; Zen YP
    Sci Total Environ; 2013 Oct; 463-464():182-91. PubMed ID: 23807020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation and Biotransformation of Triclosan and Galaxolide in the Freshwater Oligochaete Limnodrilus hoffmeisteri in a Water/Sediment Microcosm.
    Peng FJ; Ying GG; Pan CG; Selck H; Salvito D; Van den Brink PJ
    Environ Sci Technol; 2018 Aug; 52(15):8390-8398. PubMed ID: 30010330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions.
    He Y; Nie E; Li C; Ye Q; Wang H
    Environ Pollut; 2017 Jan; 220(Pt A):400-406. PubMed ID: 27692886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community.
    Dong X; He Y; Peng X; Jia X
    Bioresour Technol; 2021 Jan; 319():124134. PubMed ID: 32966969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption and degradation of triclosan in sediments and its effect on microbes.
    Huang X; Wu C; Hu H; Yu Y; Liu J
    Ecotoxicol Environ Saf; 2015 Jun; 116():76-83. PubMed ID: 25770654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Seasonal Removal Efficiency and Degradation Products of Two Typical PPCPs in Subsurface Flow Constructed Wetlands].
    Li CY; Yang YX; Zhang N; Xie HJ; Hu Z; Zhang J
    Huan Jing Ke Xue; 2021 Feb; 42(2):842-849. PubMed ID: 33742878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.