BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26490706)

  • 41. Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries.
    Song J; Choo MJ; Noh H; Park JK; Kim HT
    ChemSusChem; 2014 Dec; 7(12):3341-6. PubMed ID: 25358294
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery.
    Zheng D; Yang XQ; Qu D
    ChemSusChem; 2016 Sep; 9(17):2348-50. PubMed ID: 27535337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bottom-Up Construction of Porous Organic Frameworks with Built-In TEMPO as a Cathode for Lithium-Sulfur Batteries.
    Zhou B; Hu X; Zeng G; Li S; Wen Z; Chen L
    ChemSusChem; 2017 Jul; 10(14):2955-2961. PubMed ID: 28557296
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.
    Lou F; Zhou H; Tran TD; Melandsø Buan ME; Vullum-Bruer F; Rønning M; Walmsley JC; Chen D
    ChemSusChem; 2014 May; 7(5):1335-46. PubMed ID: 24578068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study.
    Ding Z; Zhao L; Suo L; Jiao Y; Meng S; Hu YS; Wang Z; Chen L
    Phys Chem Chem Phys; 2011 Sep; 13(33):15127-33. PubMed ID: 21789334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spore Carbon from Aspergillus Oryzae for Advanced Electrochemical Energy Storage.
    Zhong Y; Xia X; Deng S; Xie D; Shen S; Zhang K; Guo W; Wang X; Tu J
    Adv Mater; 2018 Nov; 30(46):e1805165. PubMed ID: 30285294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ encapsulation of germanium clusters in carbon nanofibers: high-performance anodes for lithium-ion batteries.
    Wang W; Xiao Y; Wang X; Liu B; Cao M
    ChemSusChem; 2014 Oct; 7(10):2914-22. PubMed ID: 25154731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe.
    Zhu J; Abdelkader A; Demko D; Deng L; Zhang P; He T; Wang Y; Huang L
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32235598
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cysteine-assisted tailoring of adsorption properties and particle size of polymer and carbon spheres.
    Wickramaratne NP; Perera VS; Ralph JM; Huang SD; Jaroniec M
    Langmuir; 2013 Mar; 29(12):4032-8. PubMed ID: 23461604
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries.
    Zhou W; Xiao X; Cai M; Yang L
    Nano Lett; 2014 Sep; 14(9):5250-6. PubMed ID: 25158077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-step pyrolytic synthesis of nitrogen and sulfur dual-doped porous carbon with high catalytic activity and good accessibility to small biomolecules.
    Gao W; Feng X; Zhang T; Huang H; Li J; Song W
    ACS Appl Mater Interfaces; 2014; 6(21):19109-17. PubMed ID: 25325840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated-Temperature Li-ion Storage.
    Tang J; Etacheri V; Pol VG
    Sci Rep; 2016 Feb; 6():20290. PubMed ID: 26846311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries.
    Han K; Shen J; Hao S; Ye H; Wolverton C; Kung MC; Kung HH
    ChemSusChem; 2014 Sep; 7(9):2545-53. PubMed ID: 25049064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ordered mesoporous carbon electrodes for Li-O2 batteries.
    Park JB; Lee J; Yoon CS; Sun YK
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13426-31. PubMed ID: 24236914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage.
    Wang Y; Zhang L; Wu Y; Zhong Y; Hu Y; Lou XW
    Chem Commun (Camb); 2015 Apr; 51(32):6921-4. PubMed ID: 25794361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Customized Structure Design and Functional Mechanism Analysis of Carbon Spheres for Advanced Lithium-Sulfur Batteries.
    Kang J; Tian X; Yan C; Wei L; Gao L; Ju J; Zhao Y; Deng N; Cheng B; Kang W
    Small; 2022 Feb; 18(8):e2104469. PubMed ID: 35015928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.
    Geng H; Zhou Q; Pan Y; Gu H; Zheng J
    Nanoscale; 2014 Apr; 6(7):3889-94. PubMed ID: 24598908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of an N-S dual-doped black fungus porous carbon matrix and its application in high-performance Li-S batteries.
    Zhao L; Zhao Y; Zhao L; Liu G
    Front Chem; 2023; 11():1288013. PubMed ID: 38179239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.