These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 26490857)

  • 1. Decoding Internally and Externally Driven Movement Plans.
    Ariani G; Wurm MF; Lingnau A
    J Neurosci; 2015 Oct; 35(42):14160-71. PubMed ID: 26490857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.
    Gallivan JP; McLean DA; Flanagan JR; Culham JC
    J Neurosci; 2013 Jan; 33(5):1991-2008. PubMed ID: 23365237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effector selection precedes reach planning in the dorsal parietofrontal cortex.
    Bernier PM; Cieslak M; Grafton ST
    J Neurophysiol; 2012 Jul; 108(1):57-68. PubMed ID: 22457458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding grip type and action goal during the observation of reaching-grasping actions: A multivariate fMRI study.
    Errante A; Ziccarelli S; Mingolla GP; Fogassi L
    Neuroimage; 2021 Nov; 243():118511. PubMed ID: 34450263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks.
    Gallivan JP; Johnsrude IS; Flanagan JR
    Cereb Cortex; 2016 Feb; 26(2):708-30. PubMed ID: 25576538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural basis of hand choice: An fMRI investigation of the Posterior Parietal Interhemispheric Competition model.
    Fitzpatrick AM; Dundon NM; Valyear KF
    Neuroimage; 2019 Jan; 185():208-221. PubMed ID: 30342238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the neural circuitry underlying planning of internally-guided voluntary action.
    Marneweck M; Flamand VH
    J Neurophysiol; 2016 Dec; 116(6):2469-2472. PubMed ID: 27121575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.
    Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M
    Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling Representations of Object and Grasp Properties in the Human Brain.
    Fabbri S; Stubbs KM; Cusack R; Culham JC
    J Neurosci; 2016 Jul; 36(29):7648-62. PubMed ID: 27445143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved decoding of planned delayed and immediate prehension movements.
    Ariani G; Oosterhof NN; Lingnau A
    Cortex; 2018 Feb; 99():330-345. PubMed ID: 29334647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms.
    Monaco S; Malfatti G; Culham JC; Cattaneo L; Turella L
    Neuroimage; 2020 Sep; 218():116981. PubMed ID: 32454207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From preparation to online control: reappraisal of neural circuitry mediating internally generated and externally guided actions.
    Elsinger CL; Harrington DL; Rao SM
    Neuroimage; 2006 Jul; 31(3):1177-87. PubMed ID: 16540347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Brain States for Planning Functional Grasps of Tools: A Functional Magnetic Resonance Imaging Multivoxel Pattern Analysis Study.
    Buchwald M; Przybylski Ł; Króliczak G
    J Int Neuropsychol Soc; 2018 Nov; 24(10):1013-1025. PubMed ID: 30196800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences.
    Boecker H; Jankowski J; Ditter P; Scheef L
    Neuroimage; 2008 Feb; 39(3):1356-69. PubMed ID: 18024158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis.
    Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E
    Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the reaching-grasping network in humans through multivoxel pattern decoding.
    Di Bono MG; Begliomini C; Castiello U; Zorzi M
    Brain Behav; 2015 Nov; 5(11):e00412. PubMed ID: 26664793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parietofrontal oscillations show hand-specific interactions with top-down movement plans.
    Blohm G; Cheyne DO; Crawford JD
    J Neurophysiol; 2022 Dec; 128(6):1518-1533. PubMed ID: 36321728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans.
    Baltaretu BR; Monaco S; Velji-Ibrahim J; Luabeya GN; Crawford JD
    J Neurosci; 2020 Jun; 40(23):4525-4535. PubMed ID: 32354854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.