These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26490857)

  • 21. Contribution of the frontal lobe to externally and internally specified verbal responses: fMRI evidence.
    Tremblay P; Gracco VL
    Neuroimage; 2006 Nov; 33(3):947-57. PubMed ID: 16990015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beta band modulations underlie action representations for movement planning.
    Turella L; Tucciarelli R; Oosterhof NN; Weisz N; Rumiati R; Lingnau A
    Neuroimage; 2016 Aug; 136():197-207. PubMed ID: 27173760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociating visual and motor directional selectivity using visuomotor adaptation.
    Haar S; Donchin O; Dinstein I
    J Neurosci; 2015 Apr; 35(17):6813-21. PubMed ID: 25926457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decoding action intentions from preparatory brain activity in human parieto-frontal networks.
    Gallivan JP; McLean DA; Valyear KF; Pettypiece CE; Culham JC
    J Neurosci; 2011 Jun; 31(26):9599-610. PubMed ID: 21715625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parieto-frontal connectivity during visually guided grasping.
    Grol MJ; Majdandzić J; Stephan KE; Verhagen L; Dijkerman HC; Bekkering H; Verstraten FA; Toni I
    J Neurosci; 2007 Oct; 27(44):11877-87. PubMed ID: 17978028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decoding intransitive actions in primary motor cortex using fMRI: toward a componential theory of 'action primitives' in motor cortex.
    Shay EA; Chen Q; Garcea FE; Mahon BZ
    Cogn Neurosci; 2019 Jan; 10(1):13-19. PubMed ID: 29544397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas.
    Pilgramm S; de Haas B; Helm F; Zentgraf K; Stark R; Munzert J; Krüger B
    Hum Brain Mapp; 2016 Jan; 37(1):81-93. PubMed ID: 26452176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans.
    Cavina-Pratesi C; Monaco S; Fattori P; Galletti C; McAdam TD; Quinlan DJ; Goodale MA; Culham JC
    J Neurosci; 2010 Aug; 30(31):10306-23. PubMed ID: 20685975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface-based information mapping reveals crossmodal vision-action representations in human parietal and occipitotemporal cortex.
    Oosterhof NN; Wiggett AJ; Diedrichsen J; Tipper SP; Downing PE
    J Neurophysiol; 2010 Aug; 104(2):1077-89. PubMed ID: 20538772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Looking up while reaching out: the neural correlates of making eye and arm movements in different spatial planes.
    Gorbet DJ; Sergio LE
    Exp Brain Res; 2019 Jan; 237(1):57-70. PubMed ID: 30306244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand.
    François-Brosseau FE; Martinu K; Strafella AP; Petrides M; Simard F; Monchi O
    Eur J Neurosci; 2009 Mar; 29(6):1277-86. PubMed ID: 19302163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differentiating intended sensory outcome from underlying motor actions in the human brain.
    Krasovsky A; Gilron R; Yeshurun Y; Mukamel R
    J Neurosci; 2014 Nov; 34(46):15446-54. PubMed ID: 25392511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
    Cavina-Pratesi C; Connolly JD; Monaco S; Figley TD; Milner AD; Schenk T; Culham JC
    Cortex; 2018 Jan; 98():128-148. PubMed ID: 28668221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of the anterior intraparietal area and the dorsal premotor cortex interfere with arbitrary visuo-motor mapping.
    Taubert M; Dafotakis M; Sparing R; Eickhoff S; Leuchte S; Fink GR; Nowak DA
    Clin Neurophysiol; 2010 Mar; 121(3):408-13. PubMed ID: 20004613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. When the brain changes its mind: flexibility of action selection in instructed and free choices.
    Fleming SM; Mars RB; Gladwin TE; Haggard P
    Cereb Cortex; 2009 Oct; 19(10):2352-60. PubMed ID: 19211661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visuomotor coordination and motor representation by human temporal lobe neurons.
    Tankus A; Fried I
    J Cogn Neurosci; 2012 Mar; 24(3):600-10. PubMed ID: 22066588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptuo-motor interactions during prehension movements.
    Verhagen L; Dijkerman HC; Grol MJ; Toni I
    J Neurosci; 2008 Apr; 28(18):4726-35. PubMed ID: 18448649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Internally driven vs. externally cued movement selection: a study on the timing of brain activity.
    Thut G; Hauert C; Viviani P; Morand S; Spinelli L; Blanke O; Landis T; Michel C
    Brain Res Cogn Brain Res; 2000 Jun; 9(3):261-9. PubMed ID: 10808137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.