These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26490857)

  • 41. Identification of a Brain Network Underlying the Execution of Freely Chosen Movements.
    Welniarz Q; Roze E; Béranger B; Méneret A; Vidailhet M; Lehéricy S; Pouget P; Hallett M; Meunier S; Galléa C
    Cereb Cortex; 2021 Nov; 32(1):216-230. PubMed ID: 34590113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The "what" and "when" of self-initiated movements.
    Hoffstaedter F; Grefkes C; Zilles K; Eickhoff SB
    Cereb Cortex; 2013 Mar; 23(3):520-30. PubMed ID: 22414772
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overlapping representations for grip type and reach direction.
    Fabbri S; Strnad L; Caramazza A; Lingnau A
    Neuroimage; 2014 Jul; 94():138-146. PubMed ID: 24650596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Understanding effector selectivity in human posterior parietal cortex by combining information patterns and activation measures.
    Leoné FT; Heed T; Toni I; Medendorp WP
    J Neurosci; 2014 May; 34(21):7102-12. PubMed ID: 24849346
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of the preSMA and the rostral cingulate zone in internally selected actions.
    Mueller VA; Brass M; Waszak F; Prinz W
    Neuroimage; 2007 Oct; 37(4):1354-61. PubMed ID: 17681798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuroimage; 2003 Jul; 19(3):764-76. PubMed ID: 12880805
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The neural control of bimanual movements in the elderly: Brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment.
    Goble DJ; Coxon JP; Van Impe A; De Vos J; Wenderoth N; Swinnen SP
    Hum Brain Mapp; 2010 Aug; 31(8):1281-95. PubMed ID: 20082331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.
    Vesia M; Barnett-Cowan M; Elahi B; Jegatheeswaran G; Isayama R; Neva JL; Davare M; Staines WR; Culham JC; Chen R
    Cortex; 2017 Jul; 92():175-186. PubMed ID: 28499145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hand shape selection in pantomimed grasping: interaction between the dorsal and the ventral visual streams and convergence on the ventral premotor area.
    Makuuchi M; Someya Y; Ogawa S; Takayama Y
    Hum Brain Mapp; 2012 Aug; 33(8):1821-33. PubMed ID: 21739528
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities.
    Naito E; Nakashima T; Kito T; Aramaki Y; Okada T; Sadato N
    Eur J Neurosci; 2007 Jun; 25(11):3476-87. PubMed ID: 17553017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Internally generated and externally triggered actions are physically distinct and independently controlled.
    Obhi SS; Haggard P
    Exp Brain Res; 2004 Jun; 156(4):518-23. PubMed ID: 15167978
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.
    Nelissen K; Fiave PA; Vanduffel W
    Cereb Cortex; 2018 Apr; 28(4):1245-1259. PubMed ID: 28334082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct contributions of human posterior parietal and dorsal premotor cortex to reach trajectory planning.
    Pilacinski A; Lindner A
    Sci Rep; 2019 Feb; 9(1):1962. PubMed ID: 30760821
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Movement activation and inhibition in Parkinson's disease: a functional imaging study.
    Disbrow EA; Sigvardt KA; Franz EA; Turner RS; Russo KA; Hinkley LB; Herron TJ; Ventura MI; Zhang L; Malhado-Chang N
    J Parkinsons Dis; 2013; 3(2):181-92. PubMed ID: 23938347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Content-Specific Codes of Parametric Vibrotactile Working Memory in Humans.
    Schmidt TT; Wu YH; Blankenburg F
    J Neurosci; 2017 Oct; 37(40):9771-9777. PubMed ID: 28893928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brain mechanisms for preparing increasingly complex sensory to motor transformations.
    Gorbet DJ; Staines WR; Sergio LE
    Neuroimage; 2004 Nov; 23(3):1100-11. PubMed ID: 15528110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decoding effector-dependent and effector-independent movement intentions from human parieto-frontal brain activity.
    Gallivan JP; McLean DA; Smith FW; Culham JC
    J Neurosci; 2011 Nov; 31(47):17149-68. PubMed ID: 22114283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of auditory, somatosensory, and visually instructed and internally generated finger movements: a PET study.
    Weeks RA; Honda M; Catalan MJ; Hallett M
    Neuroimage; 2001 Jul; 14(1 Pt 1):219-30. PubMed ID: 11525332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.