These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26490857)

  • 61. Human fMRI reveals that delayed action re-recruits visual perception.
    Singhal A; Monaco S; Kaufman LD; Culham JC
    PLoS One; 2013; 8(9):e73629. PubMed ID: 24040007
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Observed, Executed, and Imagined Action Representations can be Decoded From Ventral and Dorsal Areas.
    Filimon F; Rieth CA; Sereno MI; Cottrell GW
    Cereb Cortex; 2015 Sep; 25(9):3144-58. PubMed ID: 24862848
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Decoding Changes of Mind in Voluntary Action-Dynamics of Intentional Choice Representations.
    Löffler A; Haggard P; Bode S
    Cereb Cortex; 2020 Mar; 30(3):1199-1212. PubMed ID: 31504263
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period: evidence from event-related functional magnetic resonance imaging.
    Cavina-Pratesi C; Valyear KF; Culham JC; Köhler S; Obhi SS; Marzi CA; Goodale MA
    J Neurosci; 2006 Mar; 26(10):2704-13. PubMed ID: 16525049
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spatial and effector processing in the human parietofrontal network for reaches and saccades.
    Beurze SM; de Lange FP; Toni I; Medendorp WP
    J Neurophysiol; 2009 Jun; 101(6):3053-62. PubMed ID: 19321636
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Grasp movement decoding from premotor and parietal cortex.
    Townsend BR; Subasi E; Scherberger H
    J Neurosci; 2011 Oct; 31(40):14386-98. PubMed ID: 21976524
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Gaze and hand position effects on finger-movement-related human brain activation.
    Bédard P; Sanes JN
    J Neurophysiol; 2009 Feb; 101(2):834-42. PubMed ID: 19005002
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning.
    Martin K; Jacobs S; Frey SH
    Neuroimage; 2011 Jul; 57(2):502-12. PubMed ID: 21554968
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Context and hand posture modulate the neural dynamics of tool-object perception.
    Natraj N; Poole V; Mizelle JC; Flumini A; Borghi AM; Wheaton LA
    Neuropsychologia; 2013 Feb; 51(3):506-19. PubMed ID: 23261936
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Can left-handedness be switched? Insights from an early switch of handwriting.
    Klöppel S; Vongerichten A; van Eimeren T; Frackowiak RS; Siebner HR
    J Neurosci; 2007 Jul; 27(29):7847-53. PubMed ID: 17634378
    [TBL] [Abstract][Full Text] [Related]  

  • 71. How moving objects become animated: the human mirror neuron system assimilates non-biological movement patterns.
    Engel A; Burke M; Fiehler K; Bien S; Rosler F
    Soc Neurosci; 2008; 3(3-4):368-87. PubMed ID: 18979386
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation.
    Schluter ND; Rushworth MF; Passingham RE; Mills KR
    Brain; 1998 May; 121 ( Pt 5)():785-99. PubMed ID: 9619185
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex.
    Vargas-Irwin CE; Franquemont L; Black MJ; Donoghue JP
    J Neurosci; 2015 Jul; 35(30):10888-97. PubMed ID: 26224870
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex.
    Jeong SK; Xu Y
    J Neurosci; 2016 Feb; 36(5):1607-19. PubMed ID: 26843642
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool.
    Jacobs S; Danielmeier C; Frey SH
    J Cogn Neurosci; 2010 Nov; 22(11):2594-608. PubMed ID: 19925200
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
    Sauvage C; Jissendi P; Seignan S; Manto M; Habas C
    J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dopaminergic modulation of motor network dynamics in Parkinson's disease.
    Michely J; Volz LJ; Barbe MT; Hoffstaedter F; Viswanathan S; Timmermann L; Eickhoff SB; Fink GR; Grefkes C
    Brain; 2015 Mar; 138(Pt 3):664-78. PubMed ID: 25567321
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Neural Code of Motor Planning and Execution during Goal-Directed Movements in Crows.
    Rinnert P; Nieder A
    J Neurosci; 2021 May; 41(18):4060-4072. PubMed ID: 33608384
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study.
    Grafton ST; Fagg AH; Arbib MA
    J Neurophysiol; 1998 Feb; 79(2):1092-7. PubMed ID: 9463464
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Involvement of human thalamic neurons in internally and externally generated movements.
    MacMillan ML; Dostrovsky JO; Lozano AM; Hutchison WD
    J Neurophysiol; 2004 Feb; 91(2):1085-90. PubMed ID: 14573552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.