BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2649090)

  • 1. The inhibition of proinsulin-processing endopeptidase activities by active-site-directed peptides.
    Rhodes CJ; Zumbrunn A; Bailyes EM; Shaw E; Hutton JC
    Biochem J; 1989 Feb; 258(1):305-8. PubMed ID: 2649090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proalbumin to albumin conversion by a proinsulin processing endopeptidase of insulin secretory granules.
    Rhodes CJ; Brennan SO; Hutton JC
    J Biol Chem; 1989 Aug; 264(24):14240-5. PubMed ID: 2503514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential cleavage of des-31,32-proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. Implication of a favored route for prohormone processing.
    Rhodes CJ; Lincoln B; Shoelson SE
    J Biol Chem; 1992 Nov; 267(32):22719-27. PubMed ID: 1429623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of proinsulin to insulin: involvement of a 31,500 molecular weight thiol protease.
    Docherty K; Carroll RJ; Steiner DF
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4613-7. PubMed ID: 6750605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic conversion of proinsulin into insulin. Identification of a Ca2+-dependent acidic endopeptidase in isolated insulin-secretory granules.
    Davidson HW; Peshavaria M; Hutton JC
    Biochem J; 1987 Sep; 246(2):279-86. PubMed ID: 3318807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of proinsulin- and proglucagon-converting activities in isolated islet secretory granules.
    Fletcher DJ; Quigley JP; Bauer GE; Noe BD
    J Cell Biol; 1981 Aug; 90(2):312-22. PubMed ID: 7026570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proinsulin endopeptidase substrate specificities defined by site-directed mutagenesis of proinsulin.
    Docherty K; Rhodes CJ; Taylor NA; Shennan KI; Hutton JC
    J Biol Chem; 1989 Nov; 264(31):18335-9. PubMed ID: 2478543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic processing of chromogranin A in purified insulin granules. Formation of a 20 kDa N-terminal fragment (betagranin) by the concerted action of a Ca2+-dependent endopeptidase and carboxypeptidase H (EC 3.4.17.10).
    Hutton JC; Davidson HW; Peshavaria M
    Biochem J; 1987 Jun; 244(2):457-64. PubMed ID: 2822006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3.
    Smeekens SP; Montag AG; Thomas G; Albiges-Rizo C; Carroll R; Benig M; Phillips LA; Martin S; Ohagi S; Gardner P
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8822-6. PubMed ID: 1528899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition.
    Weiss MA; Frank BH; Khait I; Pekar A; Heiney R; Shoelson SE; Neuringer LJ
    Biochemistry; 1990 Sep; 29(36):8389-401. PubMed ID: 2252901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of the type-1 proinsulin endopeptidase by a monoclonal antibody-based immunoadsorbent assay.
    Bailyes EM; Hutton JC
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):223-9. PubMed ID: 1520272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorometric assay of a calcium-dependent, paired-basic processing endopeptidase present in insulinoma granules.
    Lindberg I; Lincoln B; Rhodes CJ
    Biochem Biophys Res Commun; 1992 Feb; 183(1):1-7. PubMed ID: 1543479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct properties of prohormone thiol protease (PTP) compared to cathepsins B, L, and H: evidence for PTP as a novel cysteine protease.
    Azaryan AV; Hook VY
    Arch Biochem Biophys; 1994 Oct; 314(1):171-7. PubMed ID: 7944391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptidyldiazomethanes. A novel mechanism of interaction with prolyl endopeptidase.
    Stone SR; Rennex D; Wikstrom P; Shaw E; Hofsteenge J
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):871-6. PubMed ID: 1590775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence requirements for proinsulin processing at the B-chain/C-peptide junction.
    Kaufmann JE; Irminger JC; Halban PA
    Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):869-74. PubMed ID: 7575420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta-cell.
    Guest PC; Bailyes EM; Hutton JC
    Biochem J; 1997 Apr; 323 ( Pt 2)(Pt 2):445-50. PubMed ID: 9163336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases.
    Davidson HW; Rhodes CJ; Hutton JC
    Nature; 1988 May; 333(6168):93-6. PubMed ID: 3283564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed helical peptides inhibit an intramembrane protease.
    Das C; Berezovska O; Diehl TS; Genet C; Buldyrev I; Tsai JY; Hyman BT; Wolfe MS
    J Am Chem Soc; 2003 Oct; 125(39):11794-5. PubMed ID: 14505382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific inhibition of procollagen C-endopeptidase activity by synthetic peptide with conservative sequence found in chordin.
    Lesiak M; Augusciak-Duma A; Szydlo A; Pruszczynska K; Sieron AL
    Acta Biochim Pol; 2008; 55(2):297-305. PubMed ID: 18542833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose-infusion rat model of non-insulin-dependent diabetes mellitus.
    Alarcón C; Leahy JL; Schuppin GT; Rhodes CJ
    J Clin Invest; 1995 Mar; 95(3):1032-9. PubMed ID: 7883951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.