BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26491014)

  • 1. Lactate Contributes to Glyceroneogenesis and Glyconeogenesis in Skeletal Muscle by Reversal of Pyruvate Kinase.
    Jin ES; Sherry AD; Malloy CR
    J Biol Chem; 2015 Dec; 290(51):30486-97. PubMed ID: 26491014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for reverse flux through pyruvate kinase in skeletal muscle.
    Jin ES; Sherry AD; Malloy CR
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E748-57. PubMed ID: 19190256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of glycerol, glucose, and lactate in the citric acid cycle prior to incorporation into hepatic acylglycerols.
    Jin ES; Sherry AD; Malloy CR
    J Biol Chem; 2013 May; 288(20):14488-14496. PubMed ID: 23572519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glyconeogenic pathway in isolated skeletal muscles of rats.
    Xavier AR; Roselino JE; Resano NM; Garófalo MA; Migliorini RH; Kettelhut Ido C
    Can J Physiol Pharmacol; 2002 Feb; 80(2):164-9. PubMed ID: 11934259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.
    Stark R; Guebre-Egziabher F; Zhao X; Feriod C; Dong J; Alves TC; Ioja S; Pongratz RL; Bhanot S; Roden M; Cline GW; Shulman GI; Kibbey RG
    J Biol Chem; 2014 Mar; 289(11):7257-63. PubMed ID: 24497630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dexamethasone on gluconeogenesis, pyruvate kinase, pyruvate carboxylase and pyruvate dehydrogenase flux in isolated hepatocytes.
    Jones CG; Hothi SK; Titheradge MA
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):821-8. PubMed ID: 8435080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of labeling pattern of liver glutamate to calculate rates of citric acid cycle and gluconeogenesis.
    Large V; Brunengraber H; Odeon M; Beylot M
    Am J Physiol; 1997 Jan; 272(1 Pt 1):E51-8. PubMed ID: 9038851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyconeogenesis from lactate in frog striated muscle.
    Connett RJ
    Am J Physiol; 1979 Nov; 237(5):C231-6. PubMed ID: 315169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of phosphoenolpyruvate [correction of phosphoenolphosphate] from pyruvate in rat skeletal muscle.
    Brodal B; Hjelle K
    Int J Biochem; 1990; 22(7):753-8. PubMed ID: 2401376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.
    Alhasawi A; Thomas SC; Appanna VD
    Enzyme Microb Technol; 2016 Apr; 85():51-6. PubMed ID: 26920481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
    Jones JG; Solomon MA; Cole SM; Sherry AD; Malloy CR
    Am J Physiol Endocrinol Metab; 2001 Oct; 281(4):E848-56. PubMed ID: 11551863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxisome proliferator-activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production.
    Xu J; Xiao G; Trujillo C; Chang V; Blanco L; Joseph SB; Bassilian S; Saad MF; Tontonoz P; Lee WN; Kurland IJ
    J Biol Chem; 2002 Dec; 277(52):50237-44. PubMed ID: 12176975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic glucose production pathways after three days of a high-fat diet.
    Jin ES; Beddow SA; Malloy CR; Samuel VT
    Metabolism; 2013 Jan; 62(1):152-62. PubMed ID: 22981137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of pathways for lactate disposal in skeletal muscle fiber types.
    Donovan CM; Pagliassotti MJ
    Med Sci Sports Exerc; 2000 Apr; 32(4):772-7. PubMed ID: 10776896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glyceroneogenesis and the supply of glycerol-3-phosphate for glyceride-glycerol synthesis in liver slices of fasted and diabetic rats.
    Martins-Santos ME; Chaves VE; Frasson D; Boschini RP; Garófalo MA; Kettelhut Ido C; Migliorini RH
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1352-7. PubMed ID: 17726141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of metabolic fluxes through pyruvate kinase, phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase, and pyruvate carboxylate in hepatocytes of different acinar origin.
    Jones CG; Titheradge MA
    Arch Biochem Biophys; 1996 Feb; 326(2):202-6. PubMed ID: 8611024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic adaptation of renal carbohydrate metabolism. V. In vivo response of rat renal-tubule gluconeogenesis to different diuretics.
    Amores MV; Hortelano P; García-Salguero L; Lupiáñez JA
    Mol Cell Biochem; 1994 Aug; 137(2):117-25. PubMed ID: 7845386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction and suppression of the key enzymes of glycolysis and gluconeogenesis in isolated perfused rat liver in response to glucose, fructose and lactate.
    Wimhurst JM; Manchester KL
    Biochem J; 1973 May; 134(1):143-56. PubMed ID: 4353083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A putative pathway of glyconeogenesis in skeletal muscle.
    Odedra BR; Palmer TN
    Biosci Rep; 1981 Feb; 1(2):157-65. PubMed ID: 7295890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reversibility of skeletal muscle pyruvate kinase and an assessment of its capacity to support glyconeogenesis.
    Dyson RD; Cardenas JM; Barsotti RJ
    J Biol Chem; 1975 May; 250(9):3316-21. PubMed ID: 164465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.