These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 26491294)
41. In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Staedtke V; Brähler M; Müller A; Georgieva R; Bauer S; Sternberg N; Voigt A; Lemke A; Keck C; Möschwitzer J; Bäumler H Small; 2010 Jan; 6(1):96-103. PubMed ID: 19882684 [TBL] [Abstract][Full Text] [Related]
42. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Hussain A; Singh VK; Singh OP; Shafaat K; Kumar S; Ahmad FJ Drug Deliv; 2016 Oct; 23(8):3101-3110. PubMed ID: 27854145 [TBL] [Abstract][Full Text] [Related]
43. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Aktaş Y; Yemisci M; Andrieux K; Gürsoy RN; Alonso MJ; Fernandez-Megia E; Novoa-Carballal R; Quiñoá E; Riguera R; Sargon MF; Celik HH; Demir AS; Hincal AA; Dalkara T; Capan Y; Couvreur P Bioconjug Chem; 2005; 16(6):1503-11. PubMed ID: 16287248 [TBL] [Abstract][Full Text] [Related]
44. Preparation and In vitro Evaluation of Efficacy and Toxicity of Polysorbate 80-coated Bovine Serum Albumin Nanoparticles containing Amphotericin B. Pedroso LS; Khalil NM; Mainardes RM Curr Drug Deliv; 2018; 15(7):1055-1063. PubMed ID: 29629661 [TBL] [Abstract][Full Text] [Related]
45. Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. Fu T; Yi J; Lv S; Zhang B J Liposome Res; 2017 Sep; 27(3):228-233. PubMed ID: 27601177 [TBL] [Abstract][Full Text] [Related]
46. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome. Van de Ven H; Paulussen C; Feijens PB; Matheeussen A; Rombaut P; Kayaert P; Van den Mooter G; Weyenberg W; Cos P; Maes L; Ludwig A J Control Release; 2012 Aug; 161(3):795-803. PubMed ID: 22641062 [TBL] [Abstract][Full Text] [Related]
47. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. Yu BG; Okano T; Kataoka K; Kwon G J Control Release; 1998 Apr; 53(1-3):131-6. PubMed ID: 9741920 [TBL] [Abstract][Full Text] [Related]
48. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. Groll AH; Giri N; Petraitis V; Petraitiene R; Candelario M; Bacher JS; Piscitelli SC; Walsh TJ J Infect Dis; 2000 Jul; 182(1):274-82. PubMed ID: 10882607 [TBL] [Abstract][Full Text] [Related]
49. Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. van Etten EW; ten Kate MT; Stearne LE; Bakker-Woudenberg IA Antimicrob Agents Chemother; 1995 Sep; 39(9):1954-8. PubMed ID: 8540697 [TBL] [Abstract][Full Text] [Related]
50. Novel Water-Soluble Amphotericin B-PEG Conjugates with Low Toxicity and Potent in Vivo Efficacy. Halperin A; Shadkchan Y; Pisarevsky E; Szpilman AM; Sandovsky H; Osherov N; Benhar I J Med Chem; 2016 Feb; 59(3):1197-206. PubMed ID: 26816333 [TBL] [Abstract][Full Text] [Related]
51. Effects of dosing regimen on accumulation, retention and prophylactic efficacy of liposomal amphotericin B. Smith PJ; Olson JA; Constable D; Schwartz J; Proffitt RT; Adler-Moore JP J Antimicrob Chemother; 2007 May; 59(5):941-51. PubMed ID: 17400589 [TBL] [Abstract][Full Text] [Related]
52. Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011-2023): a systematic review. Zadeh Mehrizi T; Mosaffa N; Vodjgani M; Ebrahimi Shahmabadi H Nanotoxicology; 2024 May; 18(3):231-258. PubMed ID: 38646931 [TBL] [Abstract][Full Text] [Related]
53. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898 [TBL] [Abstract][Full Text] [Related]
54. "Click" amphotericin B in prodrug nanoformulations for enhanced systemic fungemia treatment. Guo D; Shi C; Suo L; Ji X; Yue H; Yuan D; Luo J J Control Release; 2024 Jun; 370():626-642. PubMed ID: 38734314 [TBL] [Abstract][Full Text] [Related]
55. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Adams ML; Andes DR; Kwon GS Biomacromolecules; 2003; 4(3):750-7. PubMed ID: 12741794 [TBL] [Abstract][Full Text] [Related]
56. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Zia Q; Khan AA; Swaleha Z; Owais M Int J Nanomedicine; 2015; 10():1769-90. PubMed ID: 25784804 [TBL] [Abstract][Full Text] [Related]
57. Poly(L-lactide) Nanoparticles Reduce Amphotericin B Cytotoxicity and Maintain Its In Vitro Antifungal Activity. Casa DM; Carraro TC; de Camargo LE; Dalmolin LF; Khalil NM; Mainardes RM J Nanosci Nanotechnol; 2015 Jan; 15(1):848-54. PubMed ID: 26328449 [TBL] [Abstract][Full Text] [Related]
58. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. Amaral AC; Bocca AL; Ribeiro AM; Nunes J; Peixoto DL; Simioni AR; Primo FL; Lacava ZG; Bentes R; Titze-de-Almeida R; Tedesco AC; Morais PC; Felipe MS J Antimicrob Chemother; 2009 Mar; 63(3):526-33. PubMed ID: 19151037 [TBL] [Abstract][Full Text] [Related]
59. Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. Espuelas MS; Legrand P; Campanero MA; Appel M; Chéron M; Gamazo C; Barratt G; Irache JM J Antimicrob Chemother; 2003 Sep; 52(3):419-27. PubMed ID: 12888593 [TBL] [Abstract][Full Text] [Related]
60. Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells. Nag M; Gajbhiye V; Kesharwani P; Jain NK Colloids Surf B Biointerfaces; 2016 Dec; 148():363-370. PubMed ID: 27632697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]