These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 26491303)
1. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering. Rajesh R; Ravichandran YD Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):7-15. PubMed ID: 26491303 [TBL] [Abstract][Full Text] [Related]
2. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. Pallela R; Venkatesan J; Janapala VR; Kim SK J Biomed Mater Res A; 2012 Feb; 100(2):486-95. PubMed ID: 22125128 [TBL] [Abstract][Full Text] [Related]
3. Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering. Suárez-González D; Barnhart K; Saito E; Vanderby R; Hollister SJ; Murphy WL J Biomed Mater Res A; 2010 Oct; 95(1):222-34. PubMed ID: 20574984 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Liu M; Dai L; Shi H; Xiong S; Zhou C Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999 [TBL] [Abstract][Full Text] [Related]
5. HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration. Sarker A; Amirian J; Min YK; Lee BT Int J Biol Macromol; 2015 Nov; 81():898-911. PubMed ID: 26394381 [TBL] [Abstract][Full Text] [Related]
6. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Jin HH; Kim DH; Kim TW; Shin KK; Jung JS; Park HC; Yoon SY Int J Biol Macromol; 2012 Dec; 51(5):1079-85. PubMed ID: 22959955 [TBL] [Abstract][Full Text] [Related]
7. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Han J; Zhou Z; Yin R; Yang D; Nie J Int J Biol Macromol; 2010 Mar; 46(2):199-205. PubMed ID: 19941890 [TBL] [Abstract][Full Text] [Related]
8. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685 [TBL] [Abstract][Full Text] [Related]
9. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. Lin HR; Yeh YJ J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):52-65. PubMed ID: 15368228 [TBL] [Abstract][Full Text] [Related]
10. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. Luo Y; Lode A; Wu C; Chang J; Gelinsky M ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464 [TBL] [Abstract][Full Text] [Related]
11. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Lee GS; Park JH; Shin US; Kim HW Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Venkatesan J; Ryu B; Sudha PN; Kim SK Int J Biol Macromol; 2012 Mar; 50(2):393-402. PubMed ID: 22234296 [TBL] [Abstract][Full Text] [Related]
13. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Qi X; Ye J; Wang Y J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921 [TBL] [Abstract][Full Text] [Related]
14. Development of 3D PCL microsphere/TiO Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931 [TBL] [Abstract][Full Text] [Related]
15. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263 [TBL] [Abstract][Full Text] [Related]
17. Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. Marsich E; Bellomo F; Turco G; Travan A; Donati I; Paoletti S J Mater Sci Mater Med; 2013 Jul; 24(7):1799-807. PubMed ID: 23553569 [TBL] [Abstract][Full Text] [Related]
18. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Mou P; Peng H; Zhou L; Li L; Li H; Huang Q Int J Nanomedicine; 2019; 14():3331-3343. PubMed ID: 31123401 [No Abstract] [Full Text] [Related]
19. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering. Nga NK; Hoai TT; Viet PH Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418 [TBL] [Abstract][Full Text] [Related]
20. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Fan T; Chen J; Pan P; Zhang Y; Hu Y; Liu X; Shi X; Zhang Q Colloids Surf B Biointerfaces; 2016 Nov; 147():217-223. PubMed ID: 27518453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]