These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 26491304)
1. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels. Subramanian B; Maruthamuthu S; Rajan ST Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):17-29. PubMed ID: 26491304 [TBL] [Abstract][Full Text] [Related]
2. In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels. Subramanian B Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():48-56. PubMed ID: 25492171 [TBL] [Abstract][Full Text] [Related]
3. Promising antimicrobial capability of thin film metallic glasses. Chu YY; Lin YS; Chang CM; Liu JK; Chen CH; Huang JC Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():221-5. PubMed ID: 24433907 [TBL] [Abstract][Full Text] [Related]
4. Cytocompatibility assessment of Ti-Nb-Zr-Si thin film metallic glasses with enhanced osteoblast differentiation for biomedical applications. Thanka Rajan S; Bendavid A; Subramanian B Colloids Surf B Biointerfaces; 2019 Jan; 173():109-120. PubMed ID: 30273871 [TBL] [Abstract][Full Text] [Related]
5. Simulated body fluid electrochemical response of Zr-based metallic glasses with different degrees of crystallization. Huang CH; Huang JC; Li JB; Jang JS Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4183-7. PubMed ID: 23910331 [TBL] [Abstract][Full Text] [Related]
6. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Rajan ST; V V AT; Terada-Nakaishi M; Chen P; Hanawa T; Nandakumar AK; Subramanian B Biomed Mater; 2020 Oct; 15(6):065019. PubMed ID: 32615545 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076 [TBL] [Abstract][Full Text] [Related]
8. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response. Huang L; Pu C; Fisher RK; Mountain DJ; Gao Y; Liaw PK; Zhang W; He W Acta Biomater; 2015 Oct; 25():356-68. PubMed ID: 26162585 [TBL] [Abstract][Full Text] [Related]
9. Magnetron sputtered magnesium-based thin film metallic glasses for bioimplants. Balasubramanian S Biointerphases; 2021 Jan; 16(1):011005. PubMed ID: 33706531 [TBL] [Abstract][Full Text] [Related]
10. Tribological, biocompatibility, and antibiofilm properties of tungsten-germanium coating using magnetron sputtering. Kurt MŞ; Arslan ME; Yazici A; Mudu İ; Arslan E J Mater Sci Mater Med; 2021 Jan; 32(1):6. PubMed ID: 33471227 [TBL] [Abstract][Full Text] [Related]
11. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses. Liu L; Qiu CL; Chen Q; Chan KC; Zhang SM J Biomed Mater Res A; 2008 Jul; 86(1):160-9. PubMed ID: 17957719 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications. Kumar DD; Kaliaraj GS J Mech Behav Biomed Mater; 2018 Jan; 77():106-115. PubMed ID: 28898721 [TBL] [Abstract][Full Text] [Related]
13. Fabrication, Corrosion, and Mechanical Properties of Magnetron Sputtered Cu-Zr-Al Metallic Glass Thin Film. Wei X; Ying C; Wu J; Jiang H; Yan B; Shen J Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835686 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial activity of nanocomposite zirconium nitride/silver coatings to combat external bone fixation pin infections. Wickens DJ; West G; Kelly PJ; Verran J; Lynch S; Whitehead KA Int J Artif Organs; 2012 Oct; 35(10):817-25. PubMed ID: 23138705 [TBL] [Abstract][Full Text] [Related]
15. Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: Plasma sprayed glass-coatings. Miola M; Ferraris S; Di Nunzio S; Robotti PF; Bianchi G; Fucale G; Maina G; Cannas M; Gatti S; Massé A; Vitale Brovarone C; Verné E J Mater Sci Mater Med; 2009 Mar; 20(3):741-9. PubMed ID: 18987953 [TBL] [Abstract][Full Text] [Related]
16. Development of Co-based bulk metallic glasses as potential biomaterials. Zhou Z; Wei Q; Li Q; Jiang B; Chen Y; Sun Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():46-51. PubMed ID: 27612687 [TBL] [Abstract][Full Text] [Related]
17. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel. Jin X; Gao L; Liu E; Yu F; Shu X; Wang H J Mech Behav Biomed Mater; 2015 Oct; 50():23-32. PubMed ID: 26093948 [TBL] [Abstract][Full Text] [Related]
18. Biocompatibility assessments of 316L stainless steel substrates coated by Fe-based bulk metallic glass through electro-spark deposition method. Esmaeili A; Ghaffari SA; Nikkhah M; Malek Ghaini F; Farzan F; Mohammadi S Colloids Surf B Biointerfaces; 2021 Feb; 198():111469. PubMed ID: 33250419 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Li HF; Xie XH; Zhao K; Wang YB; Zheng YF; Wang WH; Qin L Acta Biomater; 2013 Nov; 9(10):8561-73. PubMed ID: 23380208 [TBL] [Abstract][Full Text] [Related]
20. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region. Huang CH; Lai JJ; Wei TY; Chen YH; Wang X; Kuan SY; Huang JC Mater Sci Eng C Mater Biol Appl; 2015; 52():144-50. PubMed ID: 25953551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]