These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26491381)

  • 1. New nomenclature combinations in the green alder species complex (Betulaceae).
    Chery J
    PhytoKeys; 2015; (56):1-6. PubMed ID: 26491381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion of green alder (Alnus alnobetula [Ehrh] K. Koch) in the northern French Alps: a palaeoecological point of view.
    David F
    C R Biol; 2010 May; 333(5):424-8. PubMed ID: 20451884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal Endophytes of
    Lalancette S; Lerat S; Roy S; Beaulieu C
    Mycobiology; 2019; 47(4):415-429. PubMed ID: 32010463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeding and attraction of Agelastica coerulea (Coleoptera: Chrysomelidae) to Betulaceae plants.
    Park IK; Lee SG; Shin SC; Kim CS; Ahn YJ
    J Econ Entomol; 2004 Dec; 97(6):1978-82. PubMed ID: 15666753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecophysiological Variability of
    Skoczowski A; Odrzywolska-Hasiec M; Oliwa J; Ciereszko I; Kornaś A
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33418897
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of chloroplast genomes of Alnus rubra and Betula cordifolia, and their use in phylogenetic analyses in Betulaceae.
    Lee SI; Nkongolo K; Park D; Choi IY; Choi AY; Kim NS
    Genes Genomics; 2019 Mar; 41(3):305-316. PubMed ID: 30456523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holocene chloroplast genetic variation of shrubs (
    Meucci S; Schulte L; Zimmermann HH; Stoof-Leichsenring KR; Epp L; Bronken Eidesen P; Herzschuh U
    Ecol Evol; 2021 Mar; 11(5):2173-2193. PubMed ID: 33717447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment.
    Pietrzykowski M; Woś B; Pająk M; Wanic T; Krzaklewski W; Chodak M
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):17091-17099. PubMed ID: 29644608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of pollen counts of Corylus, Alnus and Betula in Szczecin, Warsaw and Lublin (2000-2001).
    Weryszko-Chmielewska E; Puc M; Rapiejko P
    Ann Agric Environ Med; 2001; 8(2):235-40. PubMed ID: 11748882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-reactivity between the Betulaceae family and fallout in the real atmospheric aeroallergen load.
    Fernández-González M; Álvarez-López S; González-Fernández E; Jesús Aira M; Rodríguez-Rajo FJ
    Sci Total Environ; 2020 May; 715():136861. PubMed ID: 32040996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green alder (Alnus viridis) encroachment shapes microbial communities in subalpine soils and impacts its bacterial or fungal symbionts differently.
    Schwob G; Roy M; Manzi S; Pommier T; Fernandez MP
    Environ Microbiol; 2017 Aug; 19(8):3235-3250. PubMed ID: 28618146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diarylheptanoids from Alnus viridis ssp. viridis and Alnus glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas aeruginosa.
    Ilic-Tomic T; Sokovic M; Vojnovic S; Ciric A; Veljic M; Nikodinovic-Runic J; Novakovic M
    Planta Med; 2017 Jan; 83(1-02):117-125. PubMed ID: 27220074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Draft genome sequences for three unisolated
    Bethencourt L; Vautrin F; Taib N; Dubost A; Castro-Garcia L; Imbaud O; Abrouk D; Fournier P; Briolay J; Nguyen A; Normand P; Fernandez MP; Brochier-Armanet C; Herrera-Belaroussi A
    J Genomics; 2019; 7():50-55. PubMed ID: 31588247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic diversity and phylogenetic relationships between birches and alders using ITS, 18S rRNA and rbcL gene sequences.
    Savard L; Michaud M; Bousquet J
    Mol Phylogenet Evol; 1993 Jun; 2(2):112-8. PubMed ID: 8025718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant, cytotoxic, and antimicrobial activity of Alnus incana (L.) ssp. incana Moench and A. viridis (Chaix) DC ssp. viridis extracts.
    Stević T; Savikin K; Zdunić G; Stanojković T; Juranić Z; Janković T; Menković N
    J Med Food; 2010 Jun; 13(3):700-4. PubMed ID: 20438323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural differences in diarylheptanoids analogues from Alnus viridis and Alnus glutinosa influence their activity and selectivity towards cancer cells.
    Dinić J; Novaković M; Podolski-Renić A; Vajs V; Tešević V; Isaković A; Pešić M
    Chem Biol Interact; 2016 Apr; 249():36-45. PubMed ID: 26944434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incidence of Betulaceae pollen and pollinosis in Zagreb, Croatia, 2002-2005.
    Peternel R; Milanović SM; Hrga I; Mileta T; Culig J
    Ann Agric Environ Med; 2007; 14(1):87-91. PubMed ID: 17655183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.
    Nowosad J
    Int J Biometeorol; 2016 Jun; 60(6):843-55. PubMed ID: 26487352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chaix) DC. extracts.
    Dahija S; Cakar J; Vidic D; Maksimović M; Parić A
    Nat Prod Res; 2014; 28(24):2317-20. PubMed ID: 24969264
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Schwob G; Roy M; Pozzi AC; Herrera-Belaroussi A; Fernandez MP
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.