These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26491464)

  • 1. EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Comput Math Methods Med; 2015; 2015():232381. PubMed ID: 26491464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Med Biol Eng Comput; 2017 Aug; 55(8):1435-1450. PubMed ID: 27995430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.
    Jiang GJ; Fan SZ; Abbod MF; Huang HH; Lan JY; Tsai FF; Chang HC; Yang YW; Chuang FL; Chiu YF; Jen KK; Wu JF; Shieh JS
    Biomed Res Int; 2015; 2015():343478. PubMed ID: 25738152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-Periodicities Detection Using Phase-Rectified Signal Averaging in EEG Signals as a Depth of Anesthesia Monitor.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1773-1784. PubMed ID: 28391200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Physiol Meas; 2017 Feb; 38(2):116-138. PubMed ID: 28033111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the depth of anesthesia using entropy features and an artificial neural network.
    Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ
    J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks.
    Sadrawi M; Fan SZ; Abbod MF; Jen KK; Shieh JS
    Biomed Res Int; 2015; 2015():536863. PubMed ID: 26568957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.
    Gu Y; Liang Z; Hagihira S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.
    Su C; Liang Z; Li X; Li D; Li Y; Ursino M
    PLoS One; 2016; 11(10):e0164104. PubMed ID: 27723803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition.
    Madanu R; Rahman F; Abbod MF; Fan SZ; Shieh JS
    Math Biosci Eng; 2021 Jun; 18(5):5047-5068. PubMed ID: 34517477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Monitoring the depth of anesthesia using a fuzzy neural network based on EEG].
    Li M; Ye ZQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):253-5. PubMed ID: 17039930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Real-Time Depth of Anesthesia Monitoring System Based on Deep Neural Network With Large EDO Tolerant EEG Analog Front-End.
    Park Y; Han SH; Byun W; Kim JH; Lee HC; Kim SJ
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):825-837. PubMed ID: 32746339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia.
    Li D; Li X; Liang Z; Voss LJ; Sleigh JW
    J Neural Eng; 2010 Aug; 7(4):046010. PubMed ID: 20581428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated EEG preprocessing during anaesthesia: new aspects using artificial neural networks.
    Jeleazcov C; Egner S; Bremer F; Schwilden H
    Biomed Tech (Berl); 2004 May; 49(5):125-31. PubMed ID: 15212197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEMD-enhanced multivariate fuzzy entropy for the evaluation of complexity in biomedical signals.
    Azami H; Smith K; Escudero J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3761-3764. PubMed ID: 28269107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical care monitoring system for depth of anaesthesia analysis based on entropy analysis and physiological information database.
    Wei Q; Li Y; Fan SZ; Liu Q; Abbod MF; Lu CW; Lin TY; Jen KK; Wu SJ; Shieh JS
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):591-605. PubMed ID: 24981134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.
    Shalbaf A; Saffar M; Sleigh JW; Shalbaf R
    IEEE J Biomed Health Inform; 2018 May; 22(3):671-677. PubMed ID: 28574372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Log energy entropy-based EEG classification with multilayer neural networks in seizure.
    Aydin S; Saraoğlu HM; Kara S
    Ann Biomed Eng; 2009 Dec; 37(12):2626-30. PubMed ID: 19757057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time depth of anaesthesia assessment using strong analytical signal transform technique.
    Palendeng ME; Wen P; Li Y
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):723-30. PubMed ID: 25412884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy.
    Liang WK; Lo MT; Yang AC; Peng CK; Cheng SK; Tseng P; Juan CH
    Neuroimage; 2014 Apr; 90():218-34. PubMed ID: 24389016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.