These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26491952)

  • 1. In Vitro and in Vivo Demonstration of Photodynamic Activity and Cytoplasm Imaging through TPE Nanoparticles.
    Jayaram DT; Ramos-Romero S; Shankar BH; Garrido C; Rubio N; Sanchez-Cid L; Gómez SB; Blanco J; Ramaiah D
    ACS Chem Biol; 2016 Jan; 11(1):104-12. PubMed ID: 26491952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic Tetraphenylethene-Based Pyridinium Salt for Selective Cell-Membrane Imaging and Room-Light-Induced Special Reactive Oxygen Species Generation.
    Zhang W; Huang Y; Chen Y; Zhao E; Hong Y; Chen S; Lam JWY; Chen Y; Hou J; Tang BZ
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10567-10577. PubMed ID: 30801178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared-emitting AIE multinuclear cationic Ir(III) complex-assembled nanoparticles for photodynamic therapy.
    Li L; Zhang L; Tong X; Li Y; Yang Z; Zhu D; Su Z; Xie Z
    Dalton Trans; 2020 Nov; 49(43):15332-15338. PubMed ID: 33119005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells.
    da Silva AR; Inada NM; Rettori D; Baratti MO; Vercesi AE; Jorge RA
    J Photochem Photobiol B; 2009 Feb; 94(2):101-12. PubMed ID: 19070504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A light-activatable photosensitizer for photodynamic therapy based on a diarylethene derivative.
    Zhang J; Zhang R; Liu K; Li Y; Wang X; Xie X; Jiao X; Tang B
    Chem Commun (Camb); 2021 Aug; 57(67):8320-8323. PubMed ID: 34319334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system.
    Lee SJ; Koo H; Lee DE; Min S; Lee S; Chen X; Choi Y; Leary JF; Park K; Jeong SY; Kwon IC; Kim K; Choi K
    Biomaterials; 2011 Jun; 32(16):4021-9. PubMed ID: 21376388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel nanostructural photosensitizers for photodynamic therapy: in vitro studies.
    Nawalany K; Rusin A; Kepczynski M; Filipczak P; Kumorek M; Kozik B; Weitman H; Ehrenberg B; Krawczyk Z; Nowakowska M
    Int J Pharm; 2012 Jul; 430(1-2):129-40. PubMed ID: 22525077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient rose bengal based nanoplatform for photodynamic therapy.
    Gianotti E; Martins Estevão B; Cucinotta F; Hioka N; Rizzi M; Renò F; Marchese L
    Chemistry; 2014 Aug; 20(35):10921-5. PubMed ID: 25116185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles.
    Chang CC; Hsieh MC; Lin JC; Chang TC
    Biomaterials; 2012 Jan; 33(3):897-906. PubMed ID: 22024361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy.
    Taratula O; Schumann C; Duong T; Taylor KL; Taratula O
    Nanoscale; 2015 Mar; 7(9):3888-902. PubMed ID: 25422147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging.
    Qian J; Wang D; Cai F; Zhan Q; Wang Y; He S
    Biomaterials; 2012 Jun; 33(19):4851-60. PubMed ID: 22484045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-responsive nanoparticles with Aggregation-Induced Emission (AIE) characteristic for fluorescence imaging.
    Cheng W; Wang G; Pan X; Zhang Y; Tang BZ; Liu Y
    Macromol Biosci; 2014 Aug; 14(8):1059-66. PubMed ID: 24771703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of conducting polymer nanoparticles for photodynamic therapy in vitro.
    Doshi M; Copik A; Gesquiere AJ
    Photodiagnosis Photodyn Ther; 2015 Sep; 12(3):476-89. PubMed ID: 25976507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetraphenylethene-based aggregation-induced emission fluorescent organic nanoparticles: facile preparation and cell imaging application.
    Zhang X; Liu M; Yang B; Zhang X; Wei Y
    Colloids Surf B Biointerfaces; 2013 Dec; 112():81-6. PubMed ID: 23973907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy.
    Wang Y; Wang H; Liu D; Song S; Wang X; Zhang H
    Biomaterials; 2013 Oct; 34(31):7715-24. PubMed ID: 23859660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor targeting with DGEA peptide ligands: a new aromatic peptide amphiphile for imaging cancers.
    Zhan FK; Liu JC; Cheng B; Liu YC; Lai TS; Lin HC; Yeh MY
    Chem Commun (Camb); 2019 Jan; 55(8):1060-1063. PubMed ID: 30617356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorophore-Labeling Tetraphenylethene Dyes Ranging from Visible to Near-Infrared Region: AIE Behavior, Performance in Solid State, and Bioimaging in Living Cells.
    Chen W; Zhang C; Han X; Liu SH; Tan Y; Yin J
    J Org Chem; 2019 Nov; 84(22):14498-14507. PubMed ID: 31524391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro.
    Qiao XF; Zhou JC; Xiao JW; Wang YF; Sun LD; Yan CH
    Nanoscale; 2012 Aug; 4(15):4611-23. PubMed ID: 22706800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy.
    Wang M; Chen Z; Zheng W; Zhu H; Lu S; Ma E; Tu D; Zhou S; Huang M; Chen X
    Nanoscale; 2014 Jul; 6(14):8274-82. PubMed ID: 24933297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging.
    Wang YJ; Shi Y; Wang Z; Zhu Z; Zhao X; Nie H; Qian J; Qin A; Sun JZ; Tang BZ
    Chemistry; 2016 Jul; 22(28):9784-91. PubMed ID: 27265326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.