These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26491955)

  • 1. Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination.
    Liu B; Liu J
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24833-8. PubMed ID: 26491955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning DNA adsorption affinity and density on metal oxide and phosphate for improved arsenate detection.
    Lopez A; Zhang Y; Liu J
    J Colloid Interface Sci; 2017 May; 493():249-256. PubMed ID: 28110059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the selectivity of metallic oxides for arsenic and phosphate from EXAFS and DFT calculations.
    Liu H; Xie X; Cao H; Wang Y
    Chemosphere; 2023 Sep; 336():139276. PubMed ID: 37343632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells.
    Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y
    Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA adsorption by indium tin oxide nanoparticles.
    Liu B; Liu J
    Langmuir; 2015; 31(1):371-7. PubMed ID: 25521602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liposome supported metal oxide nanoparticles: interaction mechanism, light controlled content release, and intracellular delivery.
    Wang F; Liu J
    Small; 2014 Oct; 10(19):3927-31. PubMed ID: 24861966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching.
    Pautler R; Kelly EY; Huang PJ; Cao J; Liu B; Liu J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6820-5. PubMed ID: 23863107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adsorption and reaction of a titanate coupling reagent on the surfaces of different nanoparticles in supercritical CO2.
    Wang ZW; Wang TJ; Wang ZW; Jin Y
    J Colloid Interface Sci; 2006 Dec; 304(1):152-9. PubMed ID: 17005190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthogonal Adsorption of Carbon Dots and DNA on Nanoceria.
    Li C; Zhang J; Jiang H; Wang X; Liu J
    Langmuir; 2020 Mar; 36(9):2474-2481. PubMed ID: 32069412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NiO Nanoparticles for Exceptionally Stable DNA Adsorption and Its Extraction from Biological Fluids.
    Chen L; Liu B; Xu Z; Liu J
    Langmuir; 2018 Aug; 34(31):9314-9321. PubMed ID: 30001142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.
    Balcioglu M; Rana M; Robertson N; Yigit MV
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12100-10. PubMed ID: 25014711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles.
    Casals E; Pfaller T; Duschl A; Oostingh GJ; Puntes VF
    Small; 2011 Dec; 7(24):3479-86. PubMed ID: 22058075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection.
    Liu B; Liu J
    Chem Commun (Camb); 2014 Aug; 50(62):8568-70. PubMed ID: 24956061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y; Weng L
    Environ Sci Technol; 2013 Jul; 47(13):7269-76. PubMed ID: 23751067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Phosphate and Polyphosphate on Nanoceria Probed by DNA Oligonucleotides.
    Wang X; Lopez A; Liu J
    Langmuir; 2018 Jul; 34(26):7899-7905. PubMed ID: 29886738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?
    Wang D; Lin Z; Wang T; Yao Z; Qin M; Zheng S; Lu W
    J Hazard Mater; 2016 May; 308():328-34. PubMed ID: 26852208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.
    Kuang Q; Wang X; Jiang Z; Xie Z; Zheng L
    Acc Chem Res; 2014 Feb; 47(2):308-18. PubMed ID: 24341353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and spectroscopic investigations of novel nano multi-metal oxide Co3O4·CeO2·ZnO.
    Subhan MA; Ahmed T
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Aug; 129():377-81. PubMed ID: 24747863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomaterial and Aptamer-Based Sensing: Target Binding versus Target Adsorption Illustrated by the Detection of Adenosine and ATP on Metal Oxides and Graphene Oxide.
    Lopez A; Liu J
    Anal Chem; 2021 Feb; 93(5):3018-3025. PubMed ID: 33513006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inulin as a novel biocompatible coating: evaluation of surface affinities toward CaHPO4, α-Fe2O3, ZnO, CaHPO4@ZnO and α-Fe2O3@ZnO nanoparticles.
    Santillán-Urquiza E; Arteaga-Cardona F; Hernandez-Herman E; Pacheco-García PF; González-Rodríguez R; Coffer JL; Mendoza-Alvarez ME; Vélez-Ruiz JF; Méndez-Rojas MA
    J Colloid Interface Sci; 2015 Dec; 460():339-48. PubMed ID: 26364076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.