These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26492099)

  • 1. Enhanced Electrorheological Properties of Elastomers Containing TiO₂/Urea Core-Shell Particles.
    Niu C; Dong X; Qi M
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24855-63. PubMed ID: 26492099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrorheological Properties of Polydimethylsiloxane/TiO
    Agafonov AV; Kraev AS; Baranchikov AE; Ivanov VK
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32962065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Electroresponsive Performance of Double-Shell SiO2/TiO2 Hollow Nanoparticles.
    Lee S; Lee J; Hwang SH; Yun J; Jang J
    ACS Nano; 2015 May; 9(5):4939-49. PubMed ID: 25844731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of low frequency dielectric spectroscopy to analyze the electrorheological behavior of monodisperse yolk-shell SiO2/TiO2 nanospheres.
    Guo X; Chen Y; Li D; Li G; Xin M; Zhao M; Yang C; Hao C; Lei Q
    Soft Matter; 2016 Jan; 12(2):546-54. PubMed ID: 26497846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damping mechanism and theoretical model of electrorheological elastomers.
    Niu C; Dong X; Qi M
    Soft Matter; 2017 Aug; 13(32):5409-5420. PubMed ID: 28702616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Electrorheological Performance of Nb-Doped TiO2 Microspheres Based Suspensions and Their Behavior Characteristics in Low-Frequency Dielectric Spectroscopy.
    Guo X; Chen Y; Su M; Li D; Li G; Li C; Tian Y; Hao C; Lei Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26624-32. PubMed ID: 26570989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrorheological behavior of suspensions based on molten-salt synthesized lithium titanate nanoparticles and their core-shell titanate/urea analogues.
    Plachy T; Mrlik M; Kozakova Z; Suly P; Sedlacik M; Pavlinek V; Kuritka I
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3725-31. PubMed ID: 25633327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrorheological response of inorganic-coated multi-wall carbon nanotubes with core-shell nanostructure.
    Oh SY; Kang TJ
    Soft Matter; 2014 Jun; 10(21):3726-37. PubMed ID: 24686378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saturated orientational polarization of polar molecules in giant electrorheological fluids.
    Tan P; Tian WJ; Wu XF; Huang JY; Zhou LW; Huang JP
    J Phys Chem B; 2009 Jul; 113(27):9092-7. PubMed ID: 19530664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydimethylsiloxane Elastomers Filled with Rod-Like α-MnO
    Agafonov AV; Kraev AS; Egorova AA; Baranchikov AE; Kozyukhin SA; Ivanov VK
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres.
    Yin J; Shui Y; Dong Y; Zhao X
    Nanotechnology; 2014 Jan; 25(4):045702. PubMed ID: 24394540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of montmorillonite/titania nanocomposite and enhanced electrorheological activity.
    Xiang L; Zhao X
    J Colloid Interface Sci; 2006 Apr; 296(1):131-40. PubMed ID: 16203011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-Shell-Structured Electrorheological Fluid with a Polarizability-Tunable Nanocarbon Shell for Enhanced Stimuli-Responsive Activity.
    Chen S; Cheng Y; Zhao Z; Zhang K; Hao T; Sui Y; Wang W; Zhao J; Li Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35741-35749. PubMed ID: 37449438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Electromechanical Property of Silicone Elastomer Composites Containing TiO
    Gao S; Zhao H; Zhang N; Bai J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33503842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities.
    Cheng Y; Liu X; Guo J; Liu F; Li Z; Xu G; Cui P
    Nanotechnology; 2009 Feb; 20(5):055604. PubMed ID: 19417351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significantly Enhanced Dielectric Performance of Poly(vinylidene fluoride-co-hexafluoropylene)-based Composites Filled with Hierarchical Flower-like TiO₂ Particles.
    Xu N; Hu L; Zhang Q; Xiao X; Yang H; Yu E
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27373-81. PubMed ID: 26588726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions.
    Di K; Zhu Y; Yang X; Li C
    J Colloid Interface Sci; 2006 Feb; 294(2):499-503. PubMed ID: 16125189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.