These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 26492139)

  • 1. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange.
    Hmelo LR; Borlee BR; Almblad H; Love ME; Randall TE; Tseng BS; Lin C; Irie Y; Storek KM; Yang JJ; Siehnel RJ; Howell PL; Singh PK; Tolker-Nielsen T; Parsek MR; Schweizer HP; Harrison JJ
    Nat Protoc; 2015 Nov; 10(11):1820-41. PubMed ID: 26492139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid seamless method for gene knockout in Pseudomonas aeruginosa.
    Huang W; Wilks A
    BMC Microbiol; 2017 Sep; 17(1):199. PubMed ID: 28927382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Mutagenesis of Mycobacterium Strains by Homologous Recombination.
    Song S; Su Z
    Methods Mol Biol; 2023; 2704():85-96. PubMed ID: 37642839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High frequency of double crossover recombination facilitates genome engineering in Pseudomonas aeruginosa PA14 and clone C strains.
    Lee C; Kamal SM; Römling U
    Microbiology (Reading); 2019 Jul; 165(7):757-760. PubMed ID: 31091189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants.
    Choi KH; Schweizer HP
    BMC Microbiol; 2005 May; 5():30. PubMed ID: 15907219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in pseudomonas aeruginosa.
    Quénée L; Lamotte D; Polack B
    Biotechniques; 2005 Jan; 38(1):63-7. PubMed ID: 15679087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Frequency Targeted Mutagenesis in
    Gomaa AE; Deng Z; Yang Z; Shang L; Zhan Y; Lu W; Lin M; Yan Y
    J Microbiol Biotechnol; 2017 Feb; 27(2):335-341. PubMed ID: 27817190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Allelic Exchange Method for Efficient Seamless Knockout of Up to 34-kbp-Long Gene Cassettes in Pseudomonas.
    Han F; Zhang X; Chen Y; Zhao H; Wu J; Yu Y; Wang Y
    Appl Biochem Biotechnol; 2023 Dec; ():. PubMed ID: 38103122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria.
    Ortiz-Martín I; Macho AP; Lambersten L; Ramos C; Beuzón CR
    J Microbiol Methods; 2006 Dec; 67(3):395-407. PubMed ID: 16750581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted gene knockout and essentiality testing by homologous recombination.
    Gopinath K; Warner DF; Mizrahi V
    Methods Mol Biol; 2015; 1285():131-49. PubMed ID: 25779314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains.
    Hoang TT; Kutchma AJ; Becher A; Schweizer HP
    Plasmid; 2000 Jan; 43(1):59-72. PubMed ID: 10610820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus.
    Schuster CF; Howard SA; Gründling A
    Microbiology (Reading); 2019 May; 165(5):572-584. PubMed ID: 30942689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCE jumping: genetic tool for allelic exchange in bacteria.
    Wong SM
    Crit Rev Eukaryot Gene Expr; 2004; 14(1-2):53-64. PubMed ID: 15104527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counter-Selection Method for Markerless Allelic Exchange in Bordetella bronchiseptica Based on sacB Gene From Bacillus subtilis.
    Ambrosis N; Fernández J; Sisti F
    Curr Protoc Microbiol; 2020 Dec; 59(1):e125. PubMed ID: 33166051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Suite of Allelic-Exchange Vectors for the Scarless Modification of Proteobacterial Genomes.
    Lazarus JE; Warr AR; Kuehl CJ; Giorgio RT; Davis BM; Waldor MK
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31201277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade-Cas3 system.
    Zheng W; Xia Y; Wang X; Gao S; Zhou D; Ravichandran V; Jiang C; Tu Q; Yin Y; Zhang Y; Fu J; Li R; Yin J
    Nat Protoc; 2023 Sep; 18(9):2642-2670. PubMed ID: 37626246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcloning plus insertion (SPI)--a novel recombineering method for the rapid construction of gene targeting vectors.
    Reddy TR; Kelsall EJ; Fevat LM; Munson SE; Cowley SM
    J Vis Exp; 2015 Jan; (95):e52155. PubMed ID: 25590226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibson Assembly facilitates bacterial allelic exchange mutagenesis.
    Rudenko O; Barnes AC
    J Microbiol Methods; 2018 Jan; 144():157-163. PubMed ID: 29196271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Integration of a plasmid into the Pseudomonas aeruginosa chromosome mediated by homologous DNA sequences].
    Astashkin EI; Pachkunov DM; Kiselev VI
    Mol Gen Mikrobiol Virusol; 1988 Feb; (2):21-3. PubMed ID: 3131670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development and application of a rapid gene manipulating toolbox for
    Li F; Ni L; Jin F
    Sheng Wu Gong Cheng Xue Bao; 2023 Apr; 39(4):1789-1803. PubMed ID: 37154339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.